

災害に強いネットワーク（伝6）（制1）災害時にネットワークが損壊したり通信が確保する技術や，長期間電力供給を要せすず通信を継続することが可能な低消費電力化技術。

クラウドの基盤技術（蓄 1 ）
複数（分散）クラウドの連撨により高信頼•高品啠なクラウドサービスの提供を可
能とするクラウド間連推技術，ネットワ能とするクラワー間連推技術，スツトリー
ギー化技術。
M2M，センサー技術（蓄4）（制4）（変6）
 イムに収焦するための，低消費電力型のセ
ンサーネットシステムカセンサー制御技術 （通信プロトコル，アクセス制御等）
 や災害，気候変動要因等を高精度で権測す る技術

グリーンイノベーシミン
スマートグリッド（変5）
通信ネツトワークを介して，電力消費量等 て電力消費量の抑制•制御等を等実現する技術。

クラウドの基盤技術（蓄1）（再揭）

複数（分散）クラウドの連携により高信頼•高品質なクラウドサービスの提供を可
能とするウド間連措技術 ネットワ ク全体の電力消費を最通化する省エネル ギー化技術。

M2M，センサー技術（蓄4）（制4）（変6） （再揭）
 イムに収集するための，低消費電力型の サーネットシステムやセンサー制御技術 （通信プロトコル，アクセス制御等）。

超高精細映像／スマートTV（表4）

持ち運び可能くあり，高精細かつ超低消質電力なしキシブルディスプレイ技術。パネル不要のディスプレイ（表6）低消費電力かついつでもどこでも表示可能 でインタラクティブ性を有するレーザー方式プロジエクターを実現する技術。

ライフイノベーシミン

ボディエリアネットワーク（伝3）
等で接続する技術，またての情報をデータ センターへ送信する技術。

クラウドの基盤技術（蓄1）（再揭）
複数（分散）クラウドの連雔により高信頼•高品質なクラウドサービスの提供を可 ク全体の電力消費を関嘬搷扎する術，省エネル ギー化技術。

M2M，センサー技術（蓄4）（制4）（変6） （再揭）
広範かつ大量のセンサーデータをリアルタ イムに収集するための，低消費電力型の （通信プロトコル，アクセス制御等）御技

脳情報通信•処理（変10）

頭の中で考えた意図をネットワークを介し て機器制御等に活用することを目的とした汹内処理メカ二ズムの解明，高分解能な能

ワエアラブルコンピユーティング（変8） （表5） コンピユーテイング機器を身体もしくは他 の機器に装着のることを可能とする技術機器の低消費電力化技術も含む

ネットワークロボット（表2）
ネットワークを介して，情報収集やす情況分析を行うことにより，樣々な社会問題を解决するロボット技術。

第III章の重要㹎題

高精細陽星放送（伝4）
21 GHz 帯等の衛星を用いて，超高精細映像を低電力で安定して伝送する技術。

クラウドの基盤技術（蓄1）（再揭）

複数（分散）クラウドの連㷪により高信頼•高品質なサービスの提供するクラウド間連携技術，ネットワーク全体の電力消書 を最適化する省エネルギー化技術。

放送•通信連携のオープンプラットフォー

〈技術（制2）放送とインタースツトが融合した魅力的な

超高精細映像（制3）

放送波のみでは送信出来ないい情報を，ネツ トワークを介して配信することで，超高精細眏像を視㯖可能とする技術。

M2M，センサー技術（蓄4）（制4）（変6）
（再揭）
広範かつ大量のセンサーデータをリアルタ イムに収集するための，低消費電力型のセ ンサーネットシステムやセンサー制御技術 （通信プロトコル，アクセス制御等）。

超高精細映像圧棭技術（变1）

地上デジタルテレビジヨン放送で用いられ延なく視聴可能とする超高精細な術

知識処理ソフトウェア基盤（変3）因果分析を軸とした複合多系列分析技術

ウェアラブルコンピユーティング（変8） ウエアラ
コンピューティング機器を身体もしくは他

ヒユーマーマンインターフエース（挛9）手振り身振り・音声•視線•表情等，人間 の自然な動作によるインターフエース技術

ユニバーサルコミユニケーション技述（表
多言語コニユールーション，コンテンツ。 サービス基盤及び超臨場感コミユニケー ションを融合的にとらえた真に人との親和

超高精細映像／スマートTV（表4）（再

揭）電力なフレキシブルディスプレイ技術。
社会インフラセキユリティ，制御システム セキユリティ（品2）社会インフラ（通信，電力，水，交通な ど）にICTを活用して安全•安定に通用管理する技術。

情報基盤強化技術（品3）

情報基盤の鴯災害性強化 刧低消費電力化高速化等，各種技術の高度化技術
ソフトウェアエンジニアリング（信頼性と生産性向上）（品4）要求分析，設計，プログラミング，テスト開発•運用•保守技術。

組み込みソフト（信頼性）（品5
自動車やすり青報家電，産業機械などに搭載さ
 れてITリソースできめ細かな制御を行う制御用ソフトウェア。

ネットワークの基盤となる共通的技術

フォトニックネットワーク（伝1）
ネットワーク機器間での伝送•交換を光信号のままで行うことで，高速大容量
化•低消費電力化を実現する技術。

ワイヤレスネットワーク（伝2）周波数利用効率の更なる向上による，携帯電話システムや無線LANシステムの高速大容量化を実現する技術。

高圧縮•低遅延映像符号化技術（伝5）号化技術。

大容量記録技術（蓄2）

大容量ストレージシステムおよび圧縮技術重複排除技術による効率的な大量情報格納

サーバ／ストレージ／仮想化技術（蓄3）

 サーバ・ストレージ・ネットワークを共有 ソフトウェアにより制御する技術。
情報セキユリティ技術（品1）

信頼性の高いシステム構築•管理•運用技術，サイバー攻撃検知•防御•侵入防止技術，情報セキュリフィ」上の荈威の可視化技術，個人情報等の利便性と安全性の両立技術，暗号等セキュリティ基盤技術，クラウ なる複合的な技術。

テストベッド技術（制5）
様々なネットワーク技術を実証•評価する ための大規模な検証用ネットワークの構筑及び運用管理技術。

ビッグデータ（伝～表31等）
大量•多種データを許容できる時間内に効率的に収集•蓄積•処理•分析し，活用す るための技術。

新世代ネットワーク（伝～変30等）
新世代ネットワーク（伝～変30等）
大量データトラヒックの処理や耐災害性省工ネルギ一等を克服する，電話交換網や インターネットに続く新しい世代のネット ワーク技術。（有無線統合技術，ネット ワーク仮想化技術，ネットワーク仮想化技
術，データ指向ネットワーキング技術，グ
技術）

6．推進方策等に関するメンバーからの意見

－イノベーション推進の視点からの意見
＞医療の視点から
ヶ 高齢化社会の進展に伴い，I C T は，ライフ関係の大事なインフラになるとの期待は大きい。例えば，ウェアラブルなどI C T 技術が進展して，実際の生活の中で目に見えない，高齢者でも気づかない，しかし実際には，その機能とか動きがほとんどI CTベースで動いているような方向を目指 し，かつ，そこに経済性を考慮していかないといけない。
－医療技術は，これまでシーズオリエンテッドで発展してきたが，今後は，医療サイドからのICT技術にどこまで求めるかなどについて考えていく必要 がある。
ヶ 医療データは，個人のものか，病院のものかという問題がある。データの相互利用ができないと，他の産業や国を超えた扱しができず，I CTによる相互発展が期待できない。
＞ICT利活用の視点から
ヶ 世界経済フォーラムのグローバル・インフォメーション・テクノロジー・レポートによると，日本のICTの国際競争力は，18位。この中で，携帯電話料金の高さ，政府におけるI C T の利用，政府の効率性等は下位に位置付けられている。
ヶ 世界経済フォーラムのICT 競争カランキングにおいて低迷しているが，ICT の基盤に関しては世界でも非常に高い位置にある。しかし，利活用とい う面では評価が低く，交通•物流での利活用は進んでいるが，医療•福祉，教育•人材，雇用•労務，行政サービスへの利活用が進んでいないとい う実態がある。
\＆政府におけるI C T の利用，政府の効率性の観点では，デンマークの例にあるように，情報連携モデルとして各機関がデータベースを分散保有し ていて，それを粗結合の形で住民に対して統合された情報として提供するなど，オープンソースを使って利用可能な最良な技術を政府の分野にも使ってサービスイノベーションを起こすということが重視されている。
\＆行政などにおけるICT 利活用については，ICT 化してもそれを使う人の仕事のやり方を変えようとしないことが利活用が進んでいない（メリットを生 かし切れていない）要因。
＊イギリスの例では，政府とか企業がばらばらに提供していた情報を集約して，それで広告収入を得るというビジネスモデルがある。
ヶ ウェブベースのI CT市場，サービス動向の視点からは，ビッグデータ，スマートデバイス，ソーシャルネットワーキング，クラウドサービス，モバイルに関連する技術とそれらを融合したサービスプラットフォームに必要な技術が重要となると思う。
\＆クラウド基盤については，仮想化の技術の進展とともに，クラウド間の資源管理，データ連携が重要となる。そのプラットフォームをどの主体がつくるか といった点も重要である。
s 人が使いやすいものを作っていく（ユーザーエクスペリエンス）といら視点が大切。
＞イノベーション推進の課題の観点から
ヶ イノベーションの推進には，「国際化の壁」，「組織の壁」，「専門の壁」の打破と，「課題先進国としての取組とそのグローバル展開が重要である。
\＆I C T 分野の特許のトレンドを見ると，全体では公開特許件数は減少傾向になっているが，エネルギー管理，災害関係は，増加してきている一方，高齢者関係の特許についてはやや停滞，減少してきている。
\＆エネルギー管理は，国際競争が大きなテーマで，国際標準化やインド，中国の市場でどう展開していくかということを視野に入れてる必要がある。高齢者関連では，特許件数は他の分野と比べて多くはないが，研究はされているので，実用化に向けた技術開発のテーマ開発というものが非常に重要ではないかと考える。
ゝ 日本は，イノベーション推進のための構造改革が必要で，特に，異分野の人材交流，最初から海外市場を考えた研究開発，研究者の成長，活躍の機会の創設が重要なポイントである。
－今後重要となるビッグデータなどには多くの個別要素技術を統合することが必要である。個別要素技術を進めるとともに，インテグレーションのための技術も重要である。ここが弱いと効率的なシステムはできあがらず，また産業競争力の強化にもつながゆにくい。このため課題対応の上で鍵となるイ ンテグレーション技術（リアルタイム処理などを含む）を重要な課題としてとらえ，システムをどう作るかという方法論として共通基盤的な問題として取り組むことが必要である。
ヶ 実効性のある重点化やその推進方策をとりまとめるためには，研究開発から社会実装•産業競争力の強化に至るまでのプレーヤとシナリオの多角的検討が必要である。
－ICT技術開発推進の視点からの意見
\＆東日本大震災での学んだことを，I C T の技術開発にきちんとインプリメントしていかなくてはならない。地球規模のデータを収集するICTの開発と利活用を進め，リアルとバーチャルの世界を I C T の中に展開できれば，リアルな災害のシミュレーションができるようになるなど，このような技術開発も必要。

ヶ これまで，コンピュータセントリックからネットワークセントリックとパラダイムシフトしてきたが，これからは，ヒューマンセントリックということになる。
\＆I CTサービスの発展の方向性については，利活用の加速にようて社会的な課題解決型の国づくり，街づくりを推進し，それをグローバル展開して いくことが重要。
\＆I C Tとしては，より堅牢なネットワーク，より電力を使わないネットワーク，高速•大容量というものを目指していくべき。
\＆M 2 Mを含めて，いろいろな人が思いついたサービスをいかに迅速に提供できるかということが大事であり，このため，I C T インフラは，サービス多様化に以下にコレキシブルに対応していくかが重要。
＊長期的には，ネツトワークのリソースを一定の割合で割り当てるのではなく，そのときのネツトワークの利用状況に応じて，ネツトワークガその性能を変 えていくようなものを目指していくべき。
ヶ ネットワークの高速大容量技術という点では，我が国は，100Gクラスでは世界のトップレベルを走っている。
－I CTは，データセントリック，ユーザセントリック，ソーシャルセントリックの 3 つの方向性が重要。
ヶ 社会のさまざまな情報がユーザに見えるようになると，煩雑な事を意識させない「ユーザセントリック」が大切。例えばセキユリティについて，ICTリテラシ ーが高くない方でも，ユーザの意思をおもんばかって安心•安全な ICT 基盤を作ることが重要。最後はユーザインタフェースで決まる。
\＆I CTの利活用のリーダがいないときは，潜在的なニーズを見つけることは難しいので，ユーザを巻き込んだ研究開発が有効である。
々 最近は実社会のリアルなデータをセンサなどでたくさん集め，それらを様々な組み合わせや活用により都市計画から行動モ二外ングまで，社会を支 えるようなアプノーーションやサービスを作つていくという所に期待がよせられている。
－M2Mデータを膨大に集め，それらを基に予測•発見•整理などの深い分析をするための仕組みを推進する事が必要。
\＆M2M データの実社会への適用例として，古い建物の維持管理のためのモニタリングやオラングなどで進められている農業（グリーンハウス），スマー トグリッドなどがある。
－まずは国や公が有している公開可能なデータをどんどん公開して行くことがファーストステップとして必要ではないか。

ヶ フォトニックは高速•大容量化，省電力化という意味で推進されていくと思われるが，その光のレイヤにおいても，柔軟なネットワーク技術（耐災害性など）というがこれから必要。

- スマートフォンの普及などにより，3G ネツトワークと無線，もしくは複数の無線を併用するなどの技術が追及されていく。
- ビッグデータに関する意見
\＆ビッグデータの関係では，「大規模分散処理」というのが当面の技術課題と認識している。
－ビッグデータを考えたとき，データを扱う主体が明確でなく，責任を持って行う事業者，ニーズを引っ張り出す主体がいないのが問題。
\＆ビッグデータを考えたとき，データを蓄積するだけでなく，どう処理するかが重要であり，これらを行う人材育成が重要な課題である。また，データの信憑性，安全性，プライバシーなどの点も重要である。
〉 ICT の世界で一番の潮流は「ビッグデータ利活用」と思われる。SaaS（Software as a service），PaaS（Platform as a service），そし てKaaS（Knowledge as a service）と，実業×ITという点で，IT を相乗効果で発揮してい所が次のICT で勝者となる鍵。
ヶ 最近の国際会議などで 2020 年以降のICTは「ビッグデータ｢分散型クラウド｣周辺の話が支配的。
ヶ ビッグデータやM2Mはアンブレラ的な研究開発トピックとなるため，それらを進めていくにはネットワークから統計学まで多くの技術開発が必要。

補足資料 ：ビッグデータに関する利用イメージや国の研究開発の役割等について，総務省，文部科学省，経済産業省より補足説明頂いた際の資料を添付
－クラウドコンピューテイングに関する意見
\＆クラウドについては，グローバルレベルでの，ライブマイグレーション，スケールアウトということを追及することが必要である。この際，自分の預けたデータ に対してだれがどんな操作をしたのか，複製，アクセスがなかったかどうかを可視化する技術も必要である。また，複製の断片に分散して，別々のサ ーバーに秘密分散したデータを暗号化されたまま統計分析する秘密計算技術も必要である。
々 スーパーからメタへ，いわゆる人間の理解といらものをもう少し考えた情報の提供の仕方を実現する必要がある。
s 個々の「自律分散」から，それぞれの独立な自律分散の系がつなげられ「共生自律分散」という概念に進んでいくのではないか。分散型クラウドがキ ーワードになっていく。

