
地球温暖化対策としてのバイオマス利用について

山地憲治、050713 (温暖化対策技術調査検討 WG(第2回会合)

1.バイオマス利用における課題の整理

(JST/CRDS : 科学技術の未来を展望する戦略ワークショップ(エネルギー分野) - バイオマスエネルギー利用システムの普及・高度化に向けた研究開発課題 - 報告より)

● 世界

- 自然生育バイオマス(特にアジア、アフリカ) 調理、暖房に利用、再生が保障されにくい 利用効率向上、計画的伐採と植林
- 廃棄物・残さ・未利用系パイオマス (工業国でかなり進展) 普及、利用 (変換)効率向上、有害排出物低減
- 資源作物(エタノール、BDF等:ブラジル、米国、EU等で先行) 食料との競合、土地の有効利用、投入エネルギー・コスト低減

● 日本

- 廃棄物・残さ・未利用系バイオマス 普及率向上、利用コスト低減、効率向上
- 資源作物 (エタノール、BDF: 導入遅れ) 土地が狭い 海外戦略、国内生産・利用の強化

2. バイオマス利用推進上の留意点

- ・ 食料供給、森林保全との両立
- ・ エネルギー以外の用途(食料、材料(木材、紙,バイオプラスティック)との統合利用
- ・ 収集、輸送、変換・加工、利用、廃棄(リサイクル)の社会システム構築
- ・ バイオマス資源の種類に適合した技術の選択

バイオマス資源とエネルギー転換技術の対応マトリックス

_														1
i			パイオマス資源											
Dry/Wet 例示			木		製	草本系パイス			糞 尿 ・ 汚 泥		食	その作	か他	各種パイオマス資源をエネルギーに
			オ質 マ系 スパ イ		オ紙系パイ	草牧 ・草 海・ 草水		農業残渣			品廃棄物	で ん糖 ぷん	植物油	
			D	D	D	D	W	D	W W	W	W	W	W	転換する技術の対応状況を、マトリックスとして示すと左表のとおり。
			製材残材・間伐材	建築廃材	古紙	ネピアグラス	ホテイアオイ イ	稲藁・もみ殻、麦藁トウモロコシ	家畜糞尿	屎尿浄化槽汚泥 下水汚泥	厨芥、水産加工残渣	甘藷	パーム油菜種油、	
転換技術	焼	直接燃焼ボイラ												: 実用化実績のあるもの : 実験的研究段階のもの (パイロット規模の実証試験を含む) : フィージビリティスタディ段階のもの
		直接燃焼発電												
		固形燃料化												
		混焼発電												
	熱化学的変換	溶融ガス化												
		固定床ガス化												•
		低温流動層ガス化												
		噴流床ガス化												
		高カロリーガス化												
		急速熱分解												
		スラリー燃料化												
		直接液化												
		超臨界水ガス化												
		超臨界均儿処理												
		炭化												冷トオフレリックフは下辺山曲の畑木にもは2歳)
		エステル化												
	変物 換学	メタン発酵												注)本マトリックスは下記出典の調査における導入事例、研究開発事例のとりまとめ結果であり、この
		エタノール発酵アセトン・プタノール発酵												表で無印等になっていることをもって資源/技術の
		アセトン・プタノール発酵												適合性がないという短絡的な判断は避けるべきで
		水素発酵												ある。

出典)「新エネルギー等導入基礎調査 バイオマスエネルギーの利用・普及政策に関する調査」(社)日本エネルギー学会、平成14年5月

3. 研究開発課題

(JST/CRDS: 科学技術の未来を展望する戦略ワークショップ(エネルギー分野) - バイオマスエネルギー利用システムの普及・高度化に向けた研究開発課題 - 報告より)

1.バイオマス資源の拡大:

1-1. 品種改良

育種・遺伝子操作等を活用した生産量増大、環境耐性種による利用可能地拡大。

- 1-2. 国内外未利用地(乾燥地、汽水域、休耕地、沿岸域等)の調査、作物の選定
- 1-3. 土地の生産力の維持・栽培管理技術

有機性資源・土壌生態系の利用、栄養塩類の循環、持続的耕作技術、資源作物と周辺 の環境の調和、アグロリフォレストリー等

1-4. 収穫・搬送技術

リモートセンシング・ロボット等による省力化等

- 2. バイオマス利用の普及拡大:
- 2-1. バイオマス利用技術システム評価・設計技術 地域の特性に合わせた最適な設備・利用方式の組合せ、複合利用の最適化、効率・コスト評価
- 2-2. バイオマス利用社会システム評価・設計技術 利用規模・地域サイズの最適化、地域内最適利用・運用計画、地域間の流通・役割分 担の最適化、LCA的手法による環境影響・メリット評価、長期需給・収支計画に基 づくリスクヘッジ
- 2-3. データ収集・管理技術およびそれを用いたデータベース構築 地域別・種類別資源、物質フロー、製品需給、利用効率、コスト他
- 3.バイオマス利用の効率向上他:
- 3-1. バイオマスの育成・収集・搬送の省力化、自動化場所、種類・形状などの多様性に対応できるロボット技術(含廃材収集)等
- 3-2. 廃棄物系バイオマスの有害物検出・分別・除去・無害化技術 CCA含有廃材の分別、CCA抽出、低消費エネルギー減容
- 3-3. 熱化学変換プロセスの熱損失低減、タールの生成量低減・除去技術ガス化(熱分解・水熱) 液化(BTL)
- 3-4. 処理前後のバイオマスおよび生成物の省エネルギー脱水、分離技術 多段効用缶・ヒートポンプの熱回収の高度化、分離膜・同利用技術
- 3-4. 低環境負荷・低エネルギー消費廃棄物・廃液処理 灰、コンポスト、メタン発酵廃液の処理、処分、利用
- 3-5. 木質バイオマスの無酸・低酸糖化技術 酸糖化と酵素糖化の組み合わせ、水熱処理と酵素糖化の組み合わせ等
- 3-6. 高効率発酵技術

エタノール発酵: C5糖とC6糖の同時並行発酵、セルロース直接発酵、発酵菌の遺伝子操作等による活性・動作温度等改良、メタン発酵:発酵菌の複合挙動解明

3-7. バイオマス利用施設の長寿命化、保守負荷低減 低コスト耐環境材料・設計・運用技術、自己修復型設備、IT活用

以上