

温暖化対策技術調査検討WG

電力分野の技術動向と課題

平成17年8月2日

東京電力 立花慶治

エネルギー/地球温暖化問題は システム的な思考とアプローチが必要

- 一次エネルギー資源からエネルギー変換・輸送、最終需要ならびに地球環境への影響を 同時にかつ全体的に捉えるべき
- 現在のエネルギー需給構造が無前提に延長すると仮定せず、広い意味でのモーダルシフトを起こすようなイノベーションを喚起すべき
- 電化の推進はこのようなアプローチをとるに 当たって強力な選択肢を提供する

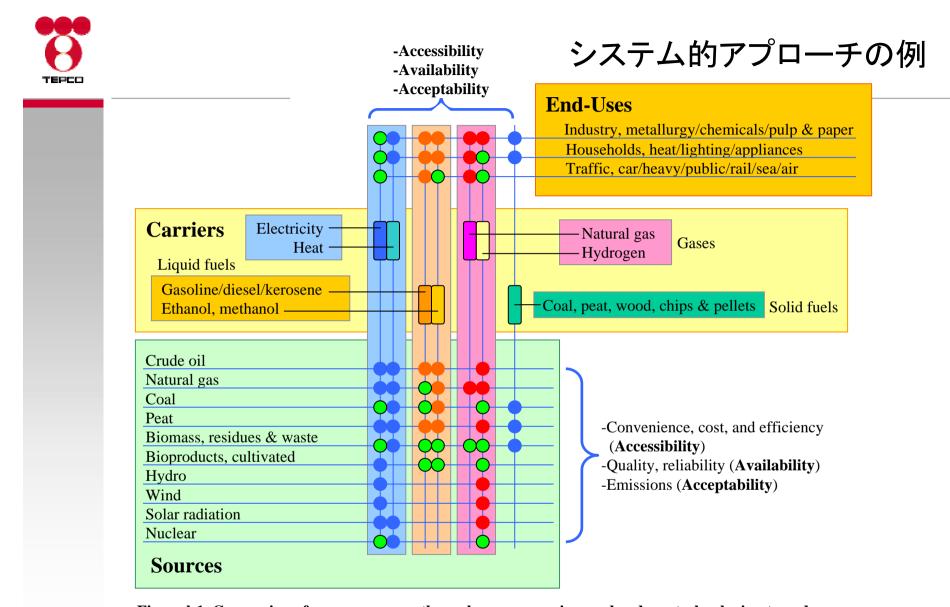


Figure 1-1. Conversion of energy sources, through energy carriers and end-use technologies, to end-uses. Green dots represent intersections where potential gains from RD&D may have the greatest impact on the market for end-use technologies, as discussed in Part III (adapted from Tuomo Suntola, Fortum Corporation, Espoo, Finland, 2003).

出典:WEC Energy End-Use Technologies for the 21st Century 報告書, July 2004

電気は最も進んだエネルギー輸送媒体

- 石炭は灰・煤煙・SOx・NOx・CO2・水を排出
- 石油はSOx NOx CO2 水を排出
- 天然ガスはNOx・CO2・水を排出
- 水素は水しか排出しない
 - …とよく言われるが、
- ・電気は水すら排出しない

電気は最も進んだエネルギー輸送媒体

(続き)

• 水素は電気に変換して使う必要がある

• 電気はそのまま最終用途に使える

電気は最も進んだエネルギー輸送媒体

(続き)

水素社会よりも電気社会の方が優れている!

惜しむらくは、早く世に出すぎたこと

最新の技術で電気社会を再評価しよう!

電気の弱点と解決策

- 電線がないと送れない=可搬性が無い
- 電気は貯められない

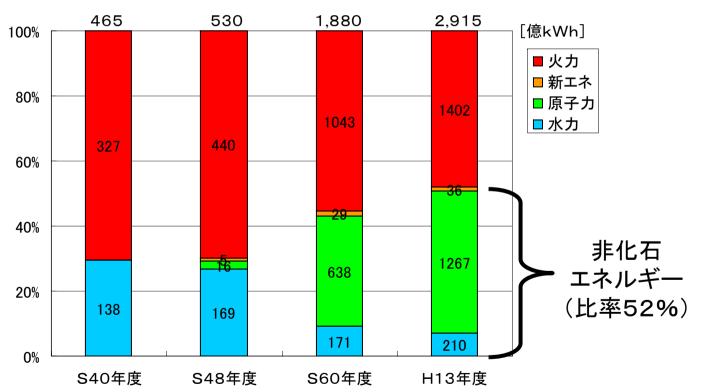
- 電気を化学エネルギーに変換する
 - * 蓄電池に充電して貯める・持ち運ぶ (e.g. 電気自動車)
 - * 水素にして輸送する・貯める・持ち運ぶ (e.g. 定置型FC、FC自動車)

電力分野の地球温暖化対策

- 供給面の対策
 - * 非化石エネルギーの利用拡大
 - * 化石エネルギーは 徹底的に電気に換える
- 需要面の対策
 - * 高効率機器の開発と普及
 - * 化石燃料の直接利用から

電気利用への切り替え

(化石燃料から非化石燃料への転換)


- *未利用エネルギーの活用
- *夜間電力の有効利用(蓄電・蓄熱システム)

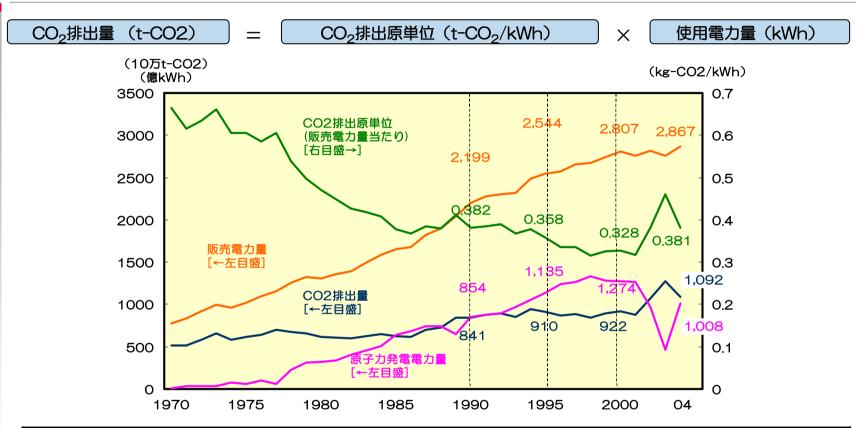
非化石エネルギーの利用拡大

オイルショック以降の石油依存率低下により、現在、発電量の 52%は石油等を消費せずにCO2も排出しない非化石電源

化石燃料は徹底的に電気に換える

超高効率なACC(Advanced Combined Cycle) LNG発電

近年ないし今後増設される火力発電所の発電効率は50%程度かそれ以上と極めて高い水準 (省エネ法等の電力評価に比べ 3~4割も高い



新鋭火力発電所の発電効率

発電所名		出力	熱効率	運転開始
横浜火力	7,8号系列	280万kW	49.0%	平成8,9年度
千葉火力	1,2号系列	288万kW	49.0%	平成10,11,12年度
品川火力	1号系列	114万kW	50.0%	平成13,15年度
富津火力	3号系列	152万kW	50.0%	平成13,15年度
	4号系列	152万kW	52.8%	平成20,21,22年度
川崎火力	1,2号系列	300万kW	52.8%	平成19,20,21,26年度以降

東京電力のCO2排出量、排出原単位の推移

	1990年度	2000年度	2001年度	2002年度	2003年度	2004年度	2010年度
CO2排出原単位 (kg- CO2/kWh)	0.382	0.328	0.317	0.381	0.461	0.381	0.31程度(目標) 90年比20%程度
使用電力量 (億kWh)	2,199	2,807	2,755	2,819	2,760	2,867	-
CO2排出量 (万t-CO2)	8,410	9,220	8,740	10,740	12,720	10,916	_

供給面の今後の課題

- 非化石エネルギー特に原子力の利用拡大
 - *次世代原子炉など(別の場で議論)
 - *電力貯蔵技術の低コスト化
- 火力発電効率の一層の向上
 - * 1700°C級のガスタービン技術開発
 - *燃料電池(SOFC)複合発電技術開発
 - *石炭ガス化複合発電技術開発
- 炭酸ガス分離・隔離!?

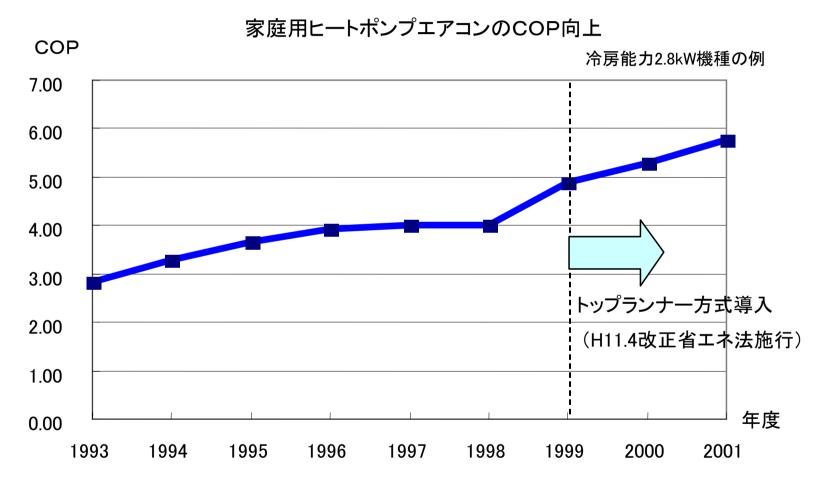
電力分野の地球温暖化対策

- 供給面の対策
 - * 非化石エネルギーの利用拡大
 - *化石エネルギーは

徹底的に電気に換える

- ・ 需要面の対策
 - * 高効率機器の開発と普及
 - *化石燃料の直接利用から

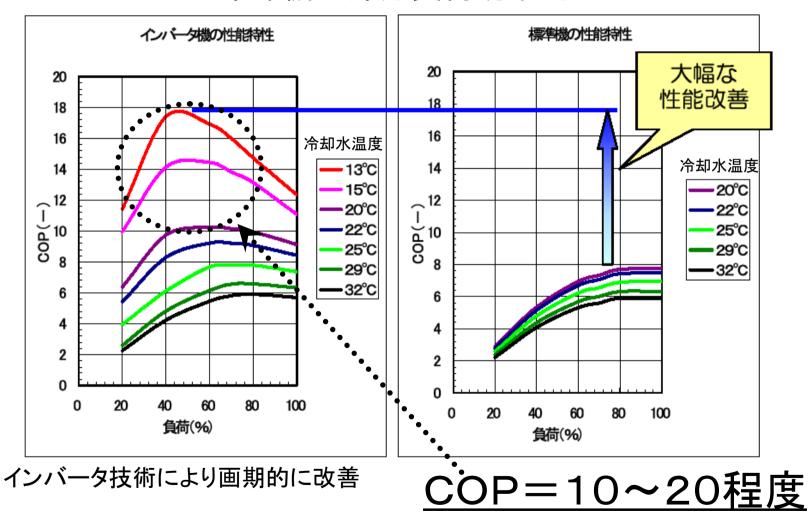
電気利用への切り替え


(化石燃料から非化石燃料への転換)

- * 未利用エネルギーの活用
- *夜間電力の有効利用(蓄電・蓄熱システム)

高効率機器の開発と普及

トップランナー方式導入により今後益々の効率向上を期待可能



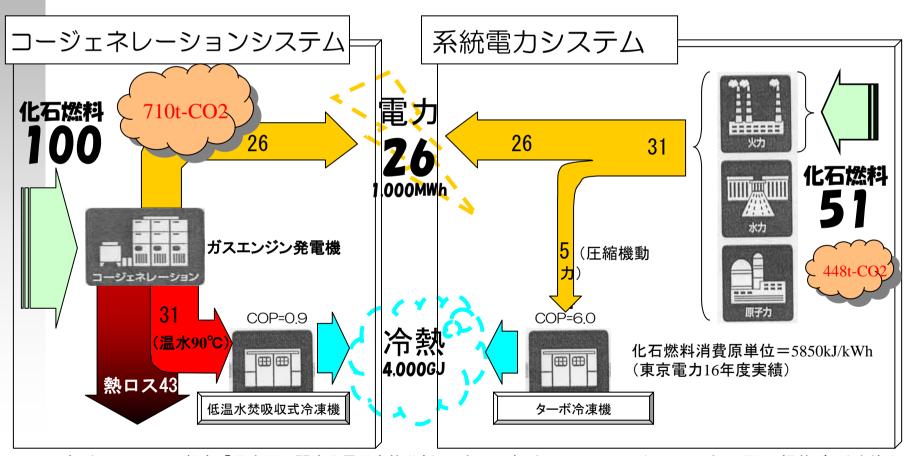
COP(エネルギー消費効率)=冷房能力または暖房能力/消費電力量 <グラフ中のデータは冷暖平均値(カタログより)>

高効率機器の開発と普及(つづき)

インバータ・ターボ冷凍機の部分負荷効率向上

出典:三菱重工業パンフレット

化石燃料の直接利用から電気への転換


MACC発電: More Advanced Combined Cycle発電

化石燃料の直接利用から電気利用への転換

(つづき)

系統電力と高効率熱源機器の組合せは、コージェネレーションと比べCO2排出量は約37%削減。

※コージェネレーションの効率:「民生用に関する運用実態分析(日本コージェネレーションセンター(1998年10月)) 掲載データを使用