

"Internet by Design"

インターネット・フレームワークを適用した 社会インフラ設計・構築・運用

東京大学 大学院 情報理工学系研究科 教授 WIDEプロジェクト 代表 江崎 浩 (Hiroshi ESAKI)

WIDE Project 3rd Decade R&D

- 1988-1997
 - 学術: Broadband & WiFi Internet (常時接続)
 - 産業:ダイヤルアップインターネット(ISP事業化)
- 1998-2007
 - 学術: Internet of Things (IoT by IPv6)
 - 產業:ADSL, WiFi, i-mode (常時接続Internet)
- 2008-2017
 - 一学術: Internet-"Framework" for Every-Industry(e.g., Energy Industry)
 - <u>産業: 100% TCP/IP化(Connect Everything by IP)</u>
- 2018-2027
 - 学術: "Internet by Design" for Every-Industry
 - 産業:オープン・スマート社会基盤(統合管理制御)

"Internet of Design"

- 1. 次世代へ提供する"財産"
 - a. 少子高齢化を支える産業・社会の効率性(省人力化)
 - b. アナログ知的財産のデジタル化·工業化
 - c. ソーシャル的な情報財産の生産と共有 (*) 例: 電子教科書: プロバイダ(C/S)志向 → P2P志向
- 2. 現世代への貢献
 - a. 命、 {情報}財産、 活動の維持
 - b. 全産業での産業構造の"インターネット化"

ICTインフラの進化

Ph.1: サイバー空間の形成

Ph.2: 実空間(物理社会基盤)の管理·制御 いわゆる『スマートシティー』→ BigData

Ph.3: 実空間との統合化・融合化
ICT基盤を核・骨格としたICT Nativeな物理社会基盤 ("Internet by Design")
例: データセンターが、エネルギーと情報の供給・蓄積拠点に。

必須条件: テストベッド

都市設計は経済の基盤

スマートな都市設計へ

۲ト		都市	
脳+頭骸骨		サーバ + データセンタ	
	頭骸骨、血管		データセンタ
	神経		サーバ、(クラウド)
神経		インターネット	
各器官		センサー・アクチュエータ	
	骨等		構造体
	センシング器官		センサー
	筋肉		アクチュエータ

日本のGDP構成 (2006年)

• 農林水産業 : 1.5%

• 鉱業 : 0.1%

• 製造業 : 21.3%

• 建設業 : 6.3%

• 電力·ガス·水道 · 2 2

• 卸売·小売業 : 2.2%

• 金融·保険業 : 13.5%

• 不動産業 : 6.9%

• 運輸·通信 : 11.9%

サービス業 : 6.6%

: 21.4%

ICT產業 48兆円 (9.4%)

東京大学; キャンパスのスマート化 ~ 2011年夏の節電効果 ~

事業所	ピーク電力 (2010年)	ピーク電力 削減率	総電力量 削減率
主要 5 キ ャンパス	約 66 MW	31%	22%-25%
工学部2号館	約 1 MW	44%	31%

【持続性&調達インパクト】

- 1. マルチベンダー環境
- 2. 国際標準化技術の作成・適用

東京大学 東京大学での事例 節電·BCP·快適化·効率化の共栄

- 1. コンピュータシステムのクラウド化
 - a. 居室・実験室からサーバ室への集団疎開 (PoE, Power on Ethernet, などの直流給電)
 - b. プラットフォーム(HW&SW)のアップグレード
- 2. センサー・アクチュエータシステムのバック エンドのクラウド化
 - a. データ保全 at サーバ室
 - b. Off-Premises 化による危機分散と接続性・可 動性の向上
 - c. マルチ・スクリーン化(PC, Tablet, Smart-Phone)

東京大学 江崎研・電気系学科 サーバの仮想化

節電効果: 71% (2.52kW)の削減効果(2011年11月時点)

After Private cloud (stable) 0.794kW Xen • Xen **VMware ESXi** No failure since April 11 Nexsan SATABeast Private cloud (experimental) 0.153kW Xen Xen Private cloud in another Lab. 0.100kW Xen Using inexpensive model: HP ProLiant DL120 G6/G7

東京大学 江崎研・電気系学科 サーバの仮想化

投資回収

- → 1年(計算機の電気のみ)
- → 0.5年? (空調を含む. PUE=2.0)

a-servers of our Lab.

..595KVV

ESYi

本当の効果;

1.システムの管理性

2.BCP(活動継続性)

3.トラブル対応力の向上

we bld

Stı

Inf

データセンターに関する

東京都 環境局

政策との連携

- 1. 当初 (2008年春)
 - ✓ データセンターは、大量の電力を消費するので、<u>悪魔</u> のような存在だ。
- 2. 2010年初め
 - ✓ 実は、データセンターは、トータルには電力消費量の削減に寄与する良い奴なんだ。。
- 3. 現在
 - ✓ 地球温暖化ガス(CO₂) 環境条例で、データセンターに <u>例外規定</u>を適用。
 - ✓ 事業所の電力使用量の削減に、データセンターとクラウドサービスを使うことを推奨。

【コンパクトタウン化】

▶[情報]: 保全·統合·利用

≻[エネルギー]: 自立・自律

『新技術』(iDCと要素技術)の展開

- 1.現状の改善
- 2.新機能の発見
- 3.Emulation→Native設計

【適用領域】

- 1. 事業所 a. BCP
- 2. 都市 b. 効率化
 - c. 環境

ICTインフラの進化

Ph.1: サイバー空間の形成

Ph.2: 実空間(物理社会基盤)の管理・制御

いわゆる『スマートシティー』→ BigData

Ph.3: 実空間との統合化・融合化
ICT基盤を核・骨格としたICT Nativeな物理社会基盤 ("Internet by Design")

