(主なご意見)

● 今後 ICT を推進する場合には、以下の事に配慮すべきである。

6.1:研究開発テーマ

6.1.① : 多種・多様なデータの生成・蓄積と、そのデータの流通を支えるシステムを構成する技術

- 今後は多くの個別要素技術を統合する、インテグレーションのための技術が重要である。インテグレーション技術(リアルタイム処理などを含む)の確立及び、
 そのシステムをどのように作るかという方法論を共通基盤的な重要な課題として取り組むことが必要。
- ・ 震災への対策、CO2 削減や電力のひっ迫に対する対策、今後ますます増大する通信トラフィックへの対策という事を考えると、ICT としては、より堅牢なネット
 ワーク、より電力を使わないネットワーク、高速・大容量への対応というものを目指していくべき。
- グーグル・アマゾン・フェイスブック・ツイッターなどのWebサービスの領域では、データが競争力の源泉となっており、データ自身がプラットフォームとなっている。その 領域では今から戦っていくのは難しいかもしれないが、M2Mでリアルなデータを膨大に集めていく領域は、彼ら(上記Webサービス業者)もこれからやってい こうというフェーズと思われるため、収集したリアルなデータを基に予測・発見・整理などの深い分析をできるようにする事が必要ではないか。
- ・ ICT の基盤としては、分散されたクラウドにより、利用者の用途に応じたデータセンターの実現と、さらにその上では M2M などのデバイスがネットワークにつながり 上位のさまざまなアプリケーション(電力、交通、医療、農業、セキュリティ等)に展開されていくというネットワークが、社会インフラの大きな一つとなると考えら れる。
- ・ 個人情報を考える観点で、秘密分散・秘密計算(暗号化したまま分散保存し、データを秘匿化したまま統計などの計算を可能とする)を進め、データを活 用する事により、科学技術の発展や社会の効率化等を目指す事が必要である。
- ・
 リアルタイムで活用するビッグデータについて、センサ等からの生成データを安心・安全に収集・解析・流通等する基盤技術や、その標準化が必要。
- スマートグリッドに関して、スマートメーターは現在30分に1回程度の検針という仕様が検討されているが、今後はデマンドレスポンスに向かっていくと想定されるため、リアルタイム通信を可能とするシステムを検討しておくことが必要。
- ・ スマートグリッドや ITS、ヘルスケア、農業などすべての産業セクターは、実空間での動きが高度なセンサーによって全て見えるようになり、そのデータがクラウド側 で分析され、それがフィードバックされるという世界に、10年以内にシフトをすると思われる。したがって、そのような世界を支えられる研究開発を推進していくべ

きである。

・ 破られないセキュリティをめざし、高度で複雑な技術のみを目指すだけではなく、破られたときにいち早く検知して、そこで対策を打つというセキュリティを開発するという事も考えられる。安いということを目指す中にはイノベーションを伴う可能性がある。例えばインドで開発された白内障の手術の仕掛けというのが、アメリカとか先進国の標準の100分の1ぐらいのコストでできるようになり、今ではインドの輸出産業になっているという事例がある。

6.1.2 : 多種・多様な情報から、知識・ノウハウを抽出し利活用するための技術

- グーグル・アマゾン・フェイスブック・ツイッターなどのWebサービスの領域では、データが競争力の源泉となっており、データ自身がプラットフォームとなっている。その 領域では今から戦っていくのは難しいかもしれないが、M2Mでリアルなデータを膨大に集めていく領域は、彼ら(上記Webサービス業者)もこれからやってい こうというフェーズと思われるため、収集したリアルなデータを基に予測・発見・整理などの深い分析できるようにする事が必要ではないか。(再掲)
- ビッグデータを考えたとき、収集・蓄積されたデータをどのように処理するかが重要である。例えば、電子カルテに記載される情報は、記載する人によって、病状等の表現が異なったり、電子カルテシステムの違いにより、システムを導入する病院ごとに、データの形式が異なっているが、それらを統合的に扱えるようにする技術が必要がある。また、データの信憑性、安全性、プライバシーなどの点にも考慮し、データの利用目的に応じ、制限がある中でも、知識やノウハウを抽出できるような処理の実現も重要である。
- 大量のデータは全てが常に正しいとは限らない(ノイズとなるデータが含まれている可能性がある)。データが無い場合に、データが集まっていないだけなのか、
 データは収集しているが抽出したい内容が含まれていないのかによって捉え方が異なってくる。非常にレアな情報のため、秘匿化をしていても個人が特定されてしまうようなデータの場合の扱い方、についても気を付ける必要がある。
- ・ 位置情報や医療データから個人が特定されるなどのプライバシーが侵害されないよう、データの非識別化処理技術、データを暗号化し分散したまま情報処理 可能な秘密分散・秘密計算技術などの研究開発を進めることが必要である。

6.1.③ : 大量のデータや様々なシステムが複雑に関わりあう際の、データ間及びシステム間の連携を支える技術

- ・ ウェブベースの ICT 市場では、ビッグデータ、スマートデバイス、ソーシャルネットワーキング、クラウドサービス等、さまざまな技術が出現している。それらの新しい 技術を融合し、サービスプラットフォームとして活用していくための技術が重要である。
- ・ 医療クラウドは災害対策としても注目されているが、クラウド間の資源管理、データ連携とそれを実現する大規模分散処理技術や仮想化技術が重要であ

る。

- ・ 鉄道システム、金融システムなど、それぞれのシステムは独立した自律分散のシステムを構築する方向で進められているが、これからは、それらの別々に作り上 げられていたシステムを繋げ、社会インフラ全体が自律分散の共生となってお互いを支え合っていく「共生自律分散」という概念に進んでいくのではないか。
- ・ 自然災害を含め、さまざまな事象が起こっても、基本的機能が維持されるような情報通信技術を考えていかないといけない。
- ・ 医療機関の電子カルテは、ベンダーごとに微妙に異なるシステムになっており、それが全国に普及している。そのように異なる型のデータやシステムを繋ぎ扱うた めのインターフェースや繋げるための技術、更にはシステム公開時に円滑に新しいシステムに移行していくという概念が重要である。
- 重要インフラが使えなくなった時にICTでサポートできることは何かを考え備えておくことが重要である。そのような「見えない災害」への対応策の検討方法として、
 地球規模のデータを収集するICTの開発と利活用を進め、リアルに近いバーチャルの世界を作ることにより、リアルな災害(電気が止まるとどうなるか、道路が
 壊れると何が起きるのか、など)のシミュレーションができるようになる。そのような観点で、東日本大震災で学んだことを、ICTの技術開発にきちんとインプリメントしていかなくてはならない。
- ・ データやシステム等の連携の際には、セキュアに連携される事が必要である。

6.1.④ : 長期的に我が国が維持しなければならない ICT 技術

- ・ センサ技術などは、大学で地道に昔から研究がおこなわれていたが、ここ数年では新たなサービスに繋がるなど、とても重要な技術となっている。このようにアナ ログとデジタルが繋がる部分というのは、地味ではあるが国としてしっかり支えておく必要がある。
- ・ 携帯電話などにも使用されている GPS センサの補正は、端末を8の字に回しておこなうが、これはスタンフォード大で 90 年代に研究されたものが発展した形 である。このように地味だけれど大切な技術がある。
- ・ 例えば、アナログ、電源、電磁ノイズ、アンテナ、A/Dコンバータ、センサ、組み込みソフト等の基盤技術は、地味ではあるが大切である。
- ・ 近年はデジタル化とその上で考えられるサービスなどに注目が集まっているが、そのベースには、アナログの技術が含まれている。国際競争力を維持するという観 点では、デジタル化されたパーツパーツのモジュール化だけではなく、それらをコーディネートするシステム化技術など、いわゆる流行の技術だけではなく基盤的な 技術の維持も重要ではないか。
- ・ 高速のデジタル信号を処理する製品を作る際には、高速アナログ信号処理の仕組みの理解が必要で、高周波アナログ技術は重要である。
- ・
 研究支援機器は海外製の物が多く、コストも高い状況となっている。海外に頼る研究とならないよう、自国にイニシアチブを持つ体制が必要である。

・ イノベーティブなソフトウェアを作るには、応用分野だけに目を光らせるのではなく、アルゴリズムの基礎や、記号論理的な考え方など、ソフトウェアの基礎の学問 が必要である。

6.2:研究開発を進める際の手法

6.2.① : 異業種、異分野融合及び戦略的国際連携の促進と新たな取組の発掘

- ・ ICT を介して、異業種・異分野のシステムの融合を促進し、新たなイノベーションを起こしていくことで、日本の産業競争力の強化につながる。
- ・ 日本は、イノベーション推進のための構造改革が必要で、特に、異分野の人材交流、最初から海外市場を考えた研究開発、研究者の成長、活躍の機会の創設が重要なポイントである。
- ・ 異分野融合はプロフィットの源泉となりうる。何をインセンティブとして、複数の分野が融合できるようになるか、その仕組みを考える必要がある。
- ・ 新しい技術要素に対して研究開発を推進するだけではなく、いろいろな既存技術を組み合わせることにより、新たな課題が発見され、それを解決する事により 新たな価値や産業が起きる。そのようなアプローチが必要である。
- ・ 復興再生、ライフ、グリーンに限らず様々な領域において、自分たちが中にいると意外と課題が見えてこないことがある。違う領域の人が見ると、ここはこういう ふうに改善したほうがいいという新たな知見が生まれる。農業から見た工業、工業から見た農業など、知識の経験値のミックスを活用する体制や教育のあり方 も必要なのではないか。「フィールドイノベーター」というチームを作り、企業の中で、経理や通信、ソフトなどさまざまな経験を積んだ、その道ではプロフェッショナ ルなメンバーがチームとなり、別のフィールドに入っていき、そこで困っていることを探り、解決策を見出すという取り組みを進めているという事例もある。
- ・ ICT とアプリケーション側、それぞれでとんがった部分の研究開発をやっている人達がコラボレートする事で、異分野融合による真価をものすごく発揮していくこと になる。
- ・ 研究者の評価方法については、今までのような合議制ではなく、責任を有する個人が推薦したら認められるようにしないと、尖がった研究が出てこない
- ・ とんがった研究や新たな取組がなかなか出てこない。ベンチャーや異分野の企業など、新しいアイディアを持つ者が研究開発に参加できるような仕組みが重要。

6.2.② : ICT(シーズ側)と課題解決(ニーズ側)を繋ぐ人材育成及び、シーズ側とニーズ側一体となったプロジェクトの推進

- ・ ICTの利活用には、推進リーダーもしくは利用するユーザを巻き込み、大きな改革の動機を持った人と一緒に、研究開発を推進することが大切である。
- ・ エネルギー高効率化について考えたとき、電力会社だけでやればいいかというと、そうではなく、ガスのデータ、石油のデータも集めたら、もっといろいろ効率的な 事が出来るのではないか。ただ、そういう取り組みをする主体が明確ではなく、ニーズを引っ張り出す主体がいないところに、利活用がうまくいっていない理由が ある。そういう仕掛けをうまく作れば、必要な要素技術も見えてきて、関係者もどんどん参加してくるのではないか。
- ・ 高齢化対策や農業、まちづくりのような所に ICT で貢献する所がこれからの国を支える大きな力になる。しかし、どのように ICT を利用する事で貢献できるか は不明確な点もある事から、民間企業ではなかなか一歩が踏み出せない。したがって、そのようないろいろな分野に出ていくようなチャレンジングな人を国として 支援をする仕組み作りが必要ではないか。
- バングラディッシュにおいて、マイクロクレジットという小口金融のシステムを導入する際に、システムの故障発生時に修理できるエンジニアがおらず、安価ではあるがホコリに弱い磁気カードでは駄目だと言われた。ニーズ側と一体となった検討により見えてきた課題と思われる。
- データセンターは莫大な電力を消費するため、当初は敬遠されがちであったが、東京大学でのサーバーの仮想化(クラウド化)による省エネ効果を行政サイドに理解され、現在では設置に関して例外規定を設けて頂いたという事例がある。
- ・ ニーズ側とシーズ側の一体的な推進に際しては、煩雑な事を意識させない「ユーザセントリック」が大切。
- ・ ICT の技術だけを説明されても、それがどのように役に立つのか、ニーズ側にはわからないことがある。ニーズとシーズの両方に理解があり、課題の解決に向けた つなぎができる人材が必要ではないか。
- ・ 医療や介護分野は、今まではシーズオリエンテッドで、使える技術を適用するという流れであったが、今後はニーズ側からの解決すべき課題を考え、それに必要なニーズを掘り下げていくという取り組みが必要ではないか。
- ・ BOPや MOP など、最近特にアジアの進展は著しい。そういう所へ向けて、今後伸びる市場は何か、そこで何が必要になるか、という事を考慮しつつ研究開発 テーマを選定し、進める事が重要である。

6.2.③ : データセントリックによるアプローチにより新たな視点・価値を創造する

- ・ データドリブンという考え方を、ありとあらゆるところで戦略的に考えると、非常に新しい設計軸になってくる。ポイントはデータのエコシステムをデザインするという事 である。なお、データを作り出す、もしくは入手するのはとても大変なことである。データを入手する側は、その困難さを十分認め、配慮することが重要である。
- ライフ分野において、研究スタイルが仮説駆動型からデータ駆動型(データ中心科学)へ移行しており、仮説を立てるより、先にデータを全部とってしまって、

(例えばヒトの遺伝子データを全部取ってしまって)その中からいろんなものを探していくというような方法になってきている。

近年の流れとして西洋医学に東洋医学を取り入れた統合医療がある。東洋医学は今までは科学的に説明ができていないという理由で、今まではエビデンス としては使われなかったが、それが最近、薬理作用などがはっきりしている事などがわかり、使われるようになってきた。これはまさにデータセントリックサイエンスと言 える。同様に今までフィジックスで考えられていた各分野をデータセントリックで見直すと、防災など多くの分野に新たな課題が見つかるのではないか。

6.3:社会実装の手法

.

6.3.① : 研究開発から社会実装までをトータルに取り組む体制の強化、PDCAの着実な実施

- ・ 出口を見据えて、それに必要な研究開発要素と制度的支援を、研究開発から社会実装・産業競争力の強化に至るまでの一連のプロセスとして検討すると いうアプローチが必要ではないか。また、全体として PDCA を回していく事が必要。
- ・ PDCA を着実に回していくためには、いつまでに何をするか、ターゲットと時間の検討が重要である。
- ・ 既に解決すべき課題が明確となっている技術への支援だけではなく、フィールド調査をして問題を発見し、その上で出口を明確にし、社会をデザインしていくこ とが必要である。
- ・ ICT を利活用して課題解決を考えるときには、問題解決に対して非常に大きな動機を持った人、ICT 的な解決策を出せる人、それに必要な ICT の基盤技 術を開発できる人がうまく機能する事が重要である。
- 研究開発から成果の社会実装に至るまでには、基礎研究から応用研究、人材育成やガイドライン策定など、さまざまな取組が効率的にかかわっていく必要がある。それらの取組を推進する府省や関連機関等が連携して目標の達成に向け推進していく事が重要。その際は適切なマイルストーンを設定していく事が必要。

6.3.2 : データのオープン化と再利用可能なフォーマットなどの環境整備

- ・税金で集めたデータはできるだけ再利用が容易な形で公開し、利用方法をできるだけ制限せず、様々な人の創意工夫を生かせるようにする事が必要。
- ・ データを公開する際は、フォーマットの順守、公開の迅速性、進捗の可視化、フィードバック等についてのルール作りが重要である。
- ・ データをオープンにする際、誤りのあるデータを公開してしまうと困るためなかなか公開できない、という考えもあるようだ。誤りがあってもいいと担保して、公開を

促す事が必要ではないか。

- 大きなデータの解析では、扱うデータが分野を超える場合があるため、データ扱いに関するガイドラインの共通化の取組が必要。
- 欧州等のように我が国においても医療情報の利活用によりイノベーションを実現することが喫緊の課題。明確なグランドデザインのもとに実際に利活用できる
 医療情報データベースを構築することが求められていると思われるが、医療情報データベースは標準化されていないため互換性がなく、使い勝手が悪い。標準
 化を進め互換性のあるものとして確立すべき。
- ・ データのオープン化については個々のデータの特性を考慮し、検討していく事が重要である。

6.3.3 : 社会における合意形成の推進

- ・ 組織を超えたデータの活用を考えたときに、慣習などの社会制度的なものが壁になるような場合もある(例えば医療分野)。個人情報に対するセキュリティ 技術などにより、その壁を乗り越えても大丈夫だと思えるような技術開発が重要である。
- ・ 個人の名前とGPSの位置データ、その他のデータなどがセットになっているようなデータセットを考えたときに、セキュリティ面で心配だから、そのデータセットに含ま れるデータは全て利用できない、とならないよう、個々の要素データとそれらの関係性を分析・整理する事が必要。
- ・ 情報の利活用を考える際に、セキュリティを考慮するがゆえに、情報利用を制限するのではなく、利活用するためにはセキュリティをどうすべきか、どうすれば安 心安全に利活用できるか、という考え方で、データ提供側と使う側の合意形成をとることが必要。

6.3.④: グローバルマーケットを想定した取組の強化

- ・ ICT サービスの発展の方向性については、利活用の加速によって社会的な課題解決型の国づくり、まちづくりを推進し、うまくいった部分についてグローバル展開していくということに加え、それの構成要素である ICT のプロダクト・サービスについてもグローバル競争力を高めていくということが必要になる。
- ・ 日本の今後10年間は高齢化先進国とも言われており、あるいはICTリテラシーが高い先進国とも言われている。そのような日本において先行的に日本の総 合モデル実証をし、ビジネスとして新しいものを創出していき、社会実装して、さらにそれをグローバル展開していくという方向感を持つことが必要。
- ・ 社会のデザインと ICT 要素技術を結びつけるシナリオを多角的に検討する際には、グローバルな視点で考える事が必要である。将来その技術が実現して使われるときの産業のエコシステム、グローバルと産業エコシステムということをつなぎ合わせれば、どの分野を日本が押え、どの分野はどういう国と提携するかというようなことまで考える必要がある。

- ・ 途上国には 40 億人もの人がいる。人類共通の課題の解決を考えるとき、先進国だけではなく、途上国の人たちにもフォローしてもらう必要があることから、途 上国マーケットまで見た上で、トータルに技術開発をするという、BOP(Bottom of Pyramid)を考慮した取り組みが重要。
- ・ いつまでにどのくらいのレベルのものをやっていけば、競争力あるものになるか、グローバルマーケットを想定したターゲットと時間軸の設定が必要である。

6.3.⑤ : 大学と産業界の連携の強化

- 東京大学の主要キャンパスのスマート化により、各部屋の使用状況や照明のオンオフ、空調のコントロールをクラウドベースでできるようにした。これが成功した
 理由は、産業界の方々に、システムのオープン化と統合化は産業界のビジネスの上でもプラスであるという事を理解してもらい、それを実証する場として、東京
 大学のキャンパスをテストベッドとして置き、エビデンスを出しながら産業界をドライブしていく事と、その中で得た経験をフィードバックするという体制を作り上げたからこそである。
- ・ 産業界がどういう知識を持った人材がどのくらいの割合で必要かという事をぜひ大学等にフィードバックし、それを適正化していくという事が重要ではないか。
- ・ 実践的なソフトウェア作りと基本的なソフトの考え方、システムの在り方を両輪としてマスターしていくようなカリキュラムをしっかり作ることがこれからのソフトウェア 工学の教育には重要。

(6.1「研究開発テーマ」を構成する技術の整理及び主な ICT 技術)

- 6.1.① : 多種・多様なデータの生成・蓄積と、そのデータの流通を支えるシステムを構成する技術
- 上記を構成する技術の整理
 - ・ 利用分野・場所に適したセンサー技術
 - ・ 大量情報の蓄積と情報流通を支える技術
 - ・ リアルタイムに解析・処理結果を導き出すスピード重視の情報流通システムに必要な技術
- 上記に必要となる主な ICT 技術
 - ・ フォトニックネットワーク

大容量記録技術

- ・ 情報セキュリティ技術
- ワイヤレスネットワーク
 ビッグデータ
 - ・ 新世代ネットワーク

- ・ クラウドの基盤技術
- M2M、センサー技術
- ・ 電磁波センシング・可視化

54

超高精細映像

ユニバーサルコミュニケーション技術
 ウェアラブルコンピューティング

・ ヒューマンインターフェース ・ 超高精細映像表示/スマートTV

6.1.② : 多種・多様な情報から、知識・ノウハウを抽出し利活用するための技術

- ト記を構成する技術の整理
 - ・利用分野で蓄積されたデータから個人の経験やノウハウなどを情報化して利活用可能とする技術
 - ・ ユーザーが容易に高機能アプリケーションやサービスを実現できるプログラミング技術や環境整備
 - ・ 大量情報を解析し、そこから必要な情報を抽出する技術
 - ・ 抽出された情報、知識を利用者にわかりやすく表現する技術
- 上記に必要となる主な ICT 技術
 - ・ 情報セキュリティ技術
 - ・ ビッグデータ

- ・ 脳情報通信・処理 ・・・ ソフトウェアエンジニアリング
- ・ 放送・通信連携のオープンプラットフォーム
- ・ 電磁波センシング・可視化 知識処理ソフトウェア基盤
- 6.1.3 : 大量のデータや様々なシステムが複雑に関わりあう際の、データ間及びシステム間の連携を支える技術
- 上記を構成する技術の整理
 - 既存の多種多様なフォーマットのデータを繋ぎ扱う技術
 - ・ 異なる主体、責任管理下において異なるセキュリティレベルを繋ぎ確保する技術
 - 新しいアプリケーションやシステムが接続されても安定的に運用できる技術
 - 大規模なシステムを設計し、それらを組み合わせ、評価・検証するための技術
 - 自然災害にも強いレジリエントな技術
- 上記に必要となる主な ICT 技術
 - ・ フォトニックネットワーク ・ サーバ/ストレージ/仮想化技術 ・ 情報セキュリティ技術

- ・ ビッグデータ
- ・ 新世代ネットワーク
- ・ テストベッド技術
- ・ 災害に強いネットワーク

・ クラウド基盤技術

情報基盤強化

・ スマートグリッド

- キュリティ
- ・ ソフトウェアエンジニアリング
- ・ 社会インフラセキュリティ・制御システムセ

6.1.④ : 長期的に我が国が維持しなければならない ICT 技術

- 上記を構成する技術の整理
 - ・ 実装するために必要な技術
 - ・ 基盤的なアナログ技術 等
- 上記に必要となる主な ICT 技術
 - ・ M2M、センサー技術 ・ 組み込みソフト
 - (図 5-1 に記載する技術以外のもの)
 - ・ アナログ技術
- ・ 電子回路
- ・ EMC(電磁両立性)に関する技術 ・ A/D 変換技術
- · 電源回路·設計技術
- ・ アンテナ技術

・ 高周波回路技術
 ・ トランスデューサ

- ・ ソフトウェア基礎
- ・ システム化技術

- (研究開発テーマと課題解決に貢献する ICT 基盤技術の関係)
- 「2020 年に向けた課題解決へ貢献する ICT 基盤技術(記載される主な進捗)と研究開発テーマの整理」 (図 6-3)