

ICT導入の成功事例検証 (長崎市の事例)

Ø ICTの導入(Web広域監視)に成功している長崎市において、ICT導入効果の事後検証を行った結果、 Web広域監視を導入することにより、維持管理費の約4%(年間1.2億円)のコスト削減の効果があることが示された

<長崎市の事例>

長崎市の事例

	導入前	導入後
監視体制	・大規模処理場(5箇所)の監視室	・インターネットで接続されたPC・モバイル機器で監視可能 (処理場・庁舎のいずれでも監視可能)
監視場所	・各処理場に人員を配置(24時間監視)	·夜間監視は、1箇所に人員を集約 ·昼間監視は、従来どおり各処理場に人員配置
費用比較 (工事費 + 人件費)	490百万円/年	365百万円/年 (差額1.2億円/年)
施設管理の 適正化 (マンホールポンプ)	異常の場合、 <mark>アラーム通報のみ</mark> 故障内容は現場確認が必要	リアルタイムに故障内容が把握でき、 <mark>即時に重</mark> 要度に応じた対応が可能
人材育成の 効果	処理場等の <mark>施設で現場担当しか状況を</mark> 把握できない	誰でも、いつでも、処理場等の施設の <mark>状況把握</mark> が可能

ICT導入に関するボトルネック

- Ø 成功事例検証(プロセスラーニング)を行うなかで、最新の<u>ICT導入</u>を迅速に進めていくには、知識・情報不足、人材不足や導入判断が困難などの<u>ボトルネックが存在</u>することを確認した。

		ICT 導入のボトルネック	ICT 導入促進のための取り組み	
(1)検討着手段階	4 -1		最新 ICT 情報の一元的管理と自治体への 提供	情報発信
	知 識 情	a) ニーズに対し、その解決に ICT を用い るという着想に至らない	ニーズとシーズのマッチング情報の自治 体への配信	
	情報不足	b)技術革新が速く、最新の技術情報の入 手が難しい	各 ICT に関連する情報を、自治体から容易に検索できる仕組みの確立	ÏΞ
	~		技術改良および新たな技術開発の継続的 な推進	技 開 術 発
	人不材足	c)新技術(ICT)を理解し導入を進める主 導的人材がいない	ICT およびその導入手法に通じたい自治体 職員の育成	人 育材 成
(2)検討実施段階	導入	d)新技術(ICT)採用の経験に乏しく、導入のための手続きや留意事項が想定できない e)導入したいICTがあっても、現状の業務プロセスと馴染まない	過去の導入事例や業務プロセス変更事例 等、実績情報の自治体への発信	事後調査
	導入判断が困難	f)導入判断を下すための技術的知見に乏 しい	ICT を活用しているユーザーの評価の収集 と発信	ユ デ ザ 価
	難		中立的な立場からの技術提案や、類似技術 間の比較資料の提供	技 評 術 価
			導入効果判断の根拠資料の提供	検 支討 援

下水道ICT普及促進プラットフォーム (仮称)構想

- Ø ICT導入の<u>ボトルネック解決</u>を実現していくための仕組みとして、<u>ICT普及促進プラットフォーム(仮称)</u>機能の構築が有効であると考えられる。
- Ø このプラットフォームは、ICT企業からの<u>最新技術</u>や、先進自治体の<u>導入事例</u>を<u>収集・評価</u>等するとともに広く公開することで、ICT導入検討の意思決定の円滑化・効率化を図る仕組みとする。

信頼性 機動力 最新性 下水道ICT普及促進プラットフォーム(仮称) 発信力 情報配信:技術の最新情報の提供(自治体ニーズに合致するシーズ提案) 技術開発:ニーズに対応した新技術の共同研究体制(自治体と企業のかけ橋) 人材育成: 下水道分野におけるICT専門家の育成(研修・体験の提供) 事後調査:導入後の追跡調査・実績データの提供(事後フォロー・改善状況報告) ユーザー評価: ユーザー評価の収集・発信(利用者の声を集約) 技術評価:第三者による簡易な審査・推奨(自治体に代って技術を評価・比較) 検討支援:B/C試算等の導入検討に必要な資料の提供(導入検討の支援) · Web.SNS情報発信 ·随時情報登録 ICT企業等 ・研修会 など ・審査依頼 自治体·下水道関連企業等 最新技術説明資料 ICTに関する最新情報の取得 技術開発動向情報 情報共有 明快な説明資料の取得 など **道入実績** コミュニケーション ソリューション提案 の円滑化 ➡ICT導入に関する意思決定の円滑化・迅速化 B/C試算 など 規定のルール・様式に沿って作成・登録