2015.03.09 第8回 次世代インフラ戦略協議会

自動走行システム

人々に笑顔をもたらす交通社会を目指して~Mobility bringing everyone a smile

筑波大学大学院システム情報工学研究科 稲垣 敏之

自動走行システムに必要な技術

クルマ: 自動走行システム 認知 判断 操作

高精細なデジタル地図

ITS先読み情報

自動運転に関する研究開発テーマ

	日本(SIP)	米国	欧州
システム 開発、 検証	ダイナミックマップ	Digital Infrastructure	Digital Infrastructure
	ITSによる先読み情報	Connected Vehicle Deployment	Connectivity
	センシング能力の向上		
	ドライバーモデル、ヒューマンファクター、HMI	Human Factors	Human Factors
	システムセキュリティ	Electronic Control Systems and Cybersecurity	Cybersecurity
		System Performance	Decision and Control
		Testing and Evaluation	Testing
		Truck Platooning	Truck Platooning
		Google car	
基盤 技術 開発	交通事故データベースと死者低減効果見積	Benefit estimation	Benefits
	ミクロ・マクロデータ解析とシュミレーション技術		
	CO2排出量可視化	AERIS	Compas4D
国際連携	国際的に開かれた研究開発環境の整備	Standard and Harmonization	
		Mobility Transformation Center	Regulatory issues
	社会受容性の醸成		Deployment Paths
次世代 都市 交通	次世代都市交通	Automated Paratransit First mile and Last mile	
	地域交通マネジメント	Accessible Transportation Technologies Research Initiative(ATTRI)	AutoNet2030 Intelligent intersection control
	次世代交通システム		CITYMOBIL
		EERE(Energy Efficient Reusable Energy)	Active Green Driving

自動運転レベルは道路環境に応じて変化

自動運転のレベル定義と市場化目標時期

4

管制

目標·出口戦略

1. 交通事故低減等 国家目標の達成: 国家目標達成の為の国家基盤構築

2.自動走行システムの実現と普及: 一気通貫の研究開発と国際連携の

同時進行による実用化推進

3.次世代公共交通システムの実用化: 東京オリンピック・パラリンピックを

一里塚として、東京都と連携し開発

5

自律・ITS・自動走行技術による交通事故・渋滞の低減

渋滞低減効果

「減速度の伝搬と拡大」: サグ部のほか、合流・分岐地点、トンネル、カーブ等でも発生

任意・混成隊列走行による優先レーンの交通制御

優先レーン全体の交通流を整流化

安全性、道路利用効率、速達性/定時運行性を確保

東京オリンピック・パラリンピック 次世代公共交通システム (ART)

<目的>

東京および日本の次世代の発展に貢献 ITS・自動走行技術とICTを活用し、以下を実現 (1)世界標準のアクセシビリティ(交通制約者対策)

(2)統合的速達性

ダイナミックマップとは

静的な情報のみでなく、動的な情報も組み込んだデジタル地図

動的情報(<1sec)

准動的情報(<1min)

准静的情報(<1hour)

静的情報(<1month)

基盤

ITS先読み情報 (周辺車両/歩行者/ バイク、信号情報など)

事故情報、渋滞情報、 狭域気象情報など

交通規制情報、 道路工事情報、 広域気象情報

路面情報、車線情報 3次元構造物など

自動走行システム搭載車のみならず、全ての車両へ様々なサービスを提供

ダイナミックマップによる産業構造の変革

ダイナミックマップの自動走行への適用

自分の位置を知る

車線レベルのルートガイド

障害物検出の精度向上

詳細地図情報

実環境と地図情報の差から 障害物を判定

状況の予測

駐車車両? それとも渋滞後尾?

12

対象とする技術概要

民間

レベル3の自動運転における制御の引き継ぎ

加速・操舵・制動全てをシステムが行う状態。 ただし、システムが要請したときは、ドライバーが対応する。

ドライバーをどのように位置づけるか

航空機の自動化で見られたヒューマンファクター課題

(1) 注意力の低下

システムの作動状況の監視がおるそかになり、重要な変化に気がつかない

(2) 状況認識の喪失

今、何が起こっているか、その原因は何か、これからどうなるのか、が分からない

- (3) **過信と、それに基づ〈不適切な依存** システムの能力の過大評価(過信)にもとづき、「システムに任せよう」との 不適切な判断を下す
- (4) モードコンフュージョン / オートメーションサプライズ 複数の作動モードのうちのどのモードで作動しているのかが正しく把握できない。 そのため、システムの「予期せぬ挙動」に驚いたりすることになる
- (5) システムの不適正な使用、誤った不使用 使用してはいけない場面で使用。使用しなければならない場面で不使用
- (6) **技量低下** 自らの技量を発揮する機会が少ないため、いざというときに技量不足
 - 教育・訓練が徹底的に行われるパイロットでも、これらの現象が起こる・・・

交通弱者を守り、応援する

総合的解決策

ITSの 無線通信 とセンサー 活用 高度 運転支援 インフラ 協調車両

自分の 移動の為の 自動走行 車両 自動走行 技術を活用 した公共交通 :ART

介護/支援 ロポット 等 アクセシブ ルデータ 活用

インフラ の整備 教育 および 広報 等

対 象 範 囲

障がい者

高齢者

妊婦/幼児/ 年少者

外国人

障がい分類等

視覚障がい

肢体不自由

聴覚障がい

知的障がい/ 認知症

移動に対する 安全性

SIP-adusで何を変えようとしているのか?

人々に笑顔をもたらす交通社会を目指して Mobility bringing everyone a smile

- 1. 交通事故を減らす 国家目標の達成
- 2.人々に笑顔をもたらす社会の実現

accessibility の改善

移動の自由と喜び

渋滞緩和

3. 車のダイナミクスの進化

Fun to drive の提供

4.新産業の創生 国際競争力アップ