
ナノ·IT·メカ統合による技術革新 - スマートロボット基盤技術 -

スマートロボットに要求される「柔らかい素材(非剛体)の利用」、 「予測できない環境変化」などに対応する要素技術・基盤技術

制御の課題

- ·自分の状態/環境の的確な認識。 リアルタイムの姿勢制御 / 運動制御
- ・予測不能な環境変化への対応(人 工知能、陰的制御)
- ・エレクトロニクスの高性能化/低消 費電力化
- ・リアルタイム通信の開発

センシング技術

高感度・小型・低電力センサ

材料·構造設計

センサの課題

- ·小型化/低価格化
- ・広いダイナミックレンジ/高解像度のイメージセンサ
- ・レーザーレーダ / レーザーレンジファインダの低価
- ・高精度ジャイロの低価格化(一桁以上)
- ・実装を考慮した2次元的触覚センサ

ナノ・IT・メカ統合による技術革新 - スマートロボット基盤技術 -

- ·現状のロボット開発は機能実証や制御システム(ソフトウェア)が中心。既存の 材料·部品(ハードウェア)の組み合わせで構成。
- ・サービス分野でのロボットは人に寄り添っての使用やスマート化が重要になり、 これに対応する新たな技術が必要。
- ·将来はモジュール化が進展し、サービスと材料·部品が大きな価値を生む。 部品·材料·デバイスの競争力強化が重要
- ・2000年頃に比べ、ネットワーク技術、マイクロチップ技術(制御技術)は大き〈進展。一方で、産業用ロボットでは動力系技術、センシング技術の進歩は遅い。
- ・ナノテク・材料、情報通信分野の新技術を、ロボットの基盤技術として統合する ことが重要。

集積MEMSセンサ、レアメタルフリー高強度磁石、カーボンナノチューブ高分子アクチュエータ、軽量・高強度材料、AIチップ、3Dプリンタなど

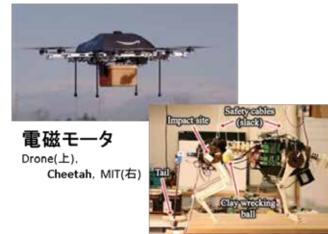
・欧米のロボット技術開発では、<u>生物の持つ機能や構造に学ぶ</u>基盤技術の開発、<u>ソフトロボティクス開発</u>の新たな動き。

ロボット技術開発の大きな技術トレンドの中で、スマート化、高性能化・低価格化・小型軽量化・安全性向上に対する基盤技術・要素技術の長期的な取組が必要。

新しいアクチュエータが実現する新しいロボットの例

圧電アクチュエータ RoboBee. Harvard Univ.

油圧アクチュエータ WildCat, Boston Dynamics.


ソフトアクチュエータ **イレウスチューブ**. 富士システムズ

人工筋肉 筋骨格ロボット, 東工大

形状記憶合金 Earthworm robot. MIT

用途別スマートロボット/要素技術・基盤技術の対応関係

分野	スマートロ ボットの例	特徴	重要な要素技術・基盤技術
医療	手術支援	体内の詳細情報 把握、細かな器 具操作の支援	・小型内視鏡、高解像度イメージセンサ(セ)・ソフトアクチュエータ(動)・ジャイロ(動)
介護·福祉	自律支援	障がい者が自立 して生活できるよ う物を運ぶ	 ・ステレオカメラ、立体画像認識(セ)、(制) ・フォーストルクセンサ、2次元圧力センサ(セ) ・小型高出力アクチュエータ(動) ・レーザーレンジセンサ(セ)
介護·福祉	介護支援	ロボットスーツに より人間の力を 増幅	・生体電位センサ(セ)・小型パワーユニット(高出力モータ)(動)・圧力センサ、角度センサ(セ)
見守り	幼児や老人の見守り	常に幼児や老人 の傍に移動して 見守り	 ・柔らかいロボットアーム(ソフトアクチュエータ)(動) ・2次元(面)の触覚センサ内臓(セ) ・超軽量・高強度の構造体、柔らかい筐体(動) ・自律動作用人工知能(制)
検査・メンテナ ンス	社会インフラメ ンテナンス	コンクリートの壁 に密着して亀裂 などを発見	·吸着材料/機構、軽量·自由度の高い移動機構(動) ·小型超音波発生器/音響センサ(セ) ·小型高性能イメージセンサー、ジャイロ(動) ·自律動作/協調動作用人工知能(制) ·近距離無線(制)
警備	建物の警備	侵入者や火災な どの異常状態を 早期に検知	·高解像度カメラ、画像認識(セ) ·レーザーレンジセンサ(セ) ·リアルタイム通信(制) ·異常を認識する人工知能(制)

生物機能情報の活用による低消費エネルギー・資源プロセス - バイオインスパイアード材料・デバイス工学 -

生物の機能

原理の解明

モデル

人工物

生物の構造、 機構、プロセス

例)

- 細胞
- 微生物
- 植物
- 昆虫
- 動物
- 人間(の器官)

例)

- 構造材料
- ▶ 触媒
- デバイス(センサ)
- 機械(ロボット、乗物)

[構造]植物、昆虫、動物などの組織や器官の構造

[機構]微生物、細胞、動物の作動原理

[プロセス]微生物や植物のバイオプロセス

革新材料、人工臓器

革新的センサ・ロボット 人工知能・脳型デバイスなど 低消費エネルギープロセス (人工光合成、燃料電池等の 化学プロセス)など 1

生物機能情報の活用による低消費エネルギー・資源プロセス パイオインスパイアード工学

生物を生命科学の視点だけでなく、物理、工学の視点から理解して、応用へのヒントを得る

科学技術 生物機能情報 テクノロジー 理論 機構 ナノテク ノロジー 物理 プロセス バイオテ クノロジー 数学 **ICT** 形態 共通基盤 構造 組織構造 計測技術 解析(モデリング・

シミュレーション)技術

知識インフラ・DB

システム

応用(エンジニアリング)の対象

プロセス

生産プロセス、省エネ、低環境負荷

機械

制御、駆動・アクチュエータ、センシング

構造体

軽量化、低抵抗、省エネ

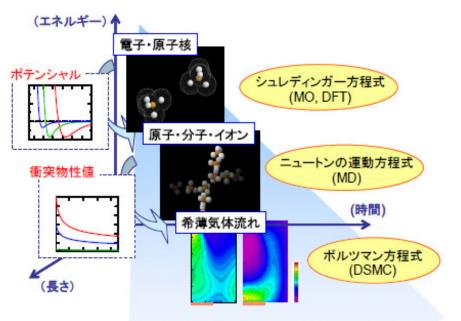
物質・材料

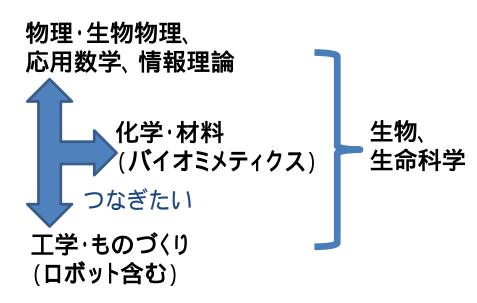
親水性·疎水性、構造色機能、接着性· 粘着性、生体適合、光学、高強度·耐磨 耗性、自己修復、低抵抗·低摩擦、防汚

素材

デバイス・部

品


物質·分子


資料:特許庁資料を参考にCRDS作成 15

バイオインスパイアードへの問題意識(仮説)と課題

- n 生物は極めて小さな脳や器官で且つ省エネの知的活動を実現
- n 人工的な再現は現時点では困難。中核となる共通基盤的な科学・技術の原理が見えていない。
 - Ø 自己組織化理論(生物法則)や分子モーターなどの微小スケールでの作動機構(物理法則)と、人工的なエンジニアリングとのスケールギャップを越える方法論が必要。
 - Ø 生物のゆらぎ(冗長性、確率的演算性)、非平衡性を、材料・機械・システムへつなぐ
 - Ø 生物の動態の多くは、通常何らかの反応(熱的変化や流れ)を伴って生じるため、これを物理・化学的に理解し、工学的応用につなげる

出典:日本機会学会流体工学部門webより

これまでのバイオミメティクス研究とは一線を画す、生物機能情報を活 用する方法論を構築が求められる