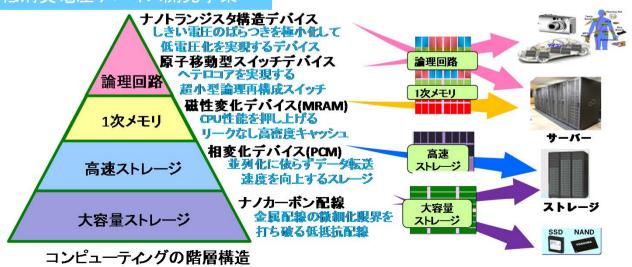

次世代型超低消費電力デバイス開発プロジェクト

出口戦略

- 〇成果活用段階における活用主体又は候補 半導体メーカー及び機器・装置・システムメーカー
- 〇成果の実用化の姿

半導体デバイスの微細化・新構造化・新材料化により、素子の高速化・低消費電力化・高集積化を実現。開発された微細化技術・低消費電力デバイスの活用により、パソコンやデータストレージなどのIT機器の消費電力増加を大幅に抑制することが可能となり、省エネを実現し、かつビッグデータにも対応する。

また、超低電圧マイコン等を搭載したバッテリレス機器などは、その応用展開として、防災・安全、交通、医療等に向けたセンシングネットワーク、高齢化社会対応セキュリティシステムなど広範なアプリケーションにも適用。


次世代型超低消費電力デバイス開発プロジェクト

出口戦略

①次世代半導体微細加工評価基盤技術開発(EUV)

	現状	将 来
半導体メーカー	デバイス: A社 他 半導体世界シェア5位、 NANDフラッシュシェア2位	2016年からの実用化を目指す。
マスクメーカー	マスクブランク: B社 他 世界シェア85%	EUV対応マスクブランクの供給。 トップシェアを維持。
	マスク: C社、D社、B社 参画企業3社の世界シェア45%	EUV対応マスクを2014~2015年から供給。
レジストメーカー	レジスト: E社、F社、G社、H社 参画企業4社世界シェア77%	EUV対応レジストを2014~2015年から供給。
装置メーカー	マスクブランク検査装置: I社 同検査装置シェア100%	EUV対応装置の供給。 トップシェアを維持
	マスクパターン欠陥検査装置: J社 微細化(45nm)対応装置事業化	EUV対応の検査装置をマスクメーカー等へ供給

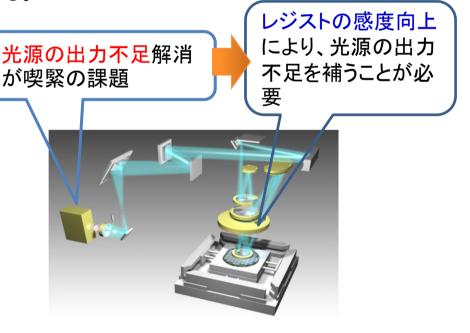
②革新的な次世代型低消費電圧デバイス開発事業

次世代型超低消費電力デバイス開発プロジェクト

施策推進にあたっての課題

次世代LSIに求められる低電力化を実現するためには2つの研究開発を同時に実施することが必要。

- ①従来から取り組まれているLSIの微細化をさらに進めるための基盤技術
- ②微細化によらない新構造・新材料の低電圧デバイスの基盤技術


光源の出力不足

EUV光を用いた露光技術を確立することにより、回路線幅10nm台以細のLSI製造が可能になり、IT機器の大幅な小型化・高性能化による低消費電力化が図られる。

現在、EUVリソグラフィでは光源の出力不足が最大の課題であり、世界で2社の露光用EUV光源メーカー(Cymer(米)、Gigaphoton(日))が高出力化に向けた研究開発に取り組んでいるが、開発が遅れている。

本プロジェクトにおいては、光源出力の不足分を 補うレジストの高感度化の検討や、回路線幅11nm 以細へ対応するための新たなアプローチの検討な どレジスト材料技術開発の加速が必要である。

