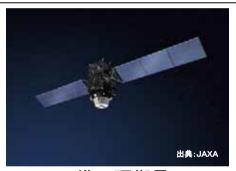
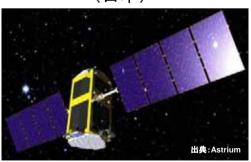

宇宙インフラに関する施策

衛星の種類

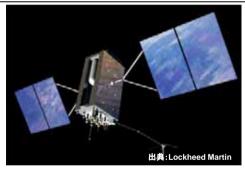
衛星測位のしくみ

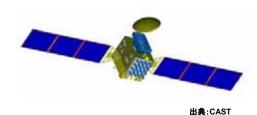

衛星測位は、人工衛星からの信号 を受信することにより地上の位置・ 時刻を特定する技術

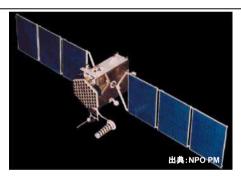
3次元情報と時刻情報の4つのパラメータを計算する必要があるため、位置特定には最低4機の人工衛星から信号を受信

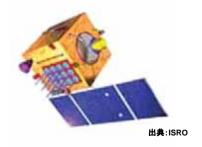

米国GPSは、米国国防総省が運用している30機程度の人工衛星から構成されるシステムで、各人工衛星は高度約2万km上空を12時間で地球を1周している

測位衛星分野の国際動向と日本の位置付け


- ■我が国は民生用として世界最大規模のGPS利用国。
- ■GPSの補強・補完を目的とした日本独自の準天頂衛星システムを開発し、初号機「みちびき」を2010年9月に打上げ。
- ■「実用準天頂衛星システム事業の推進の基本的な考え方」(平成23年9月30日閣議決定)において、2010年代後半を目途にまずは4機体制を整備し、将来的には、持続測位が可能となる7機体制を目指すこととした。


準天頂衛星 (日本)

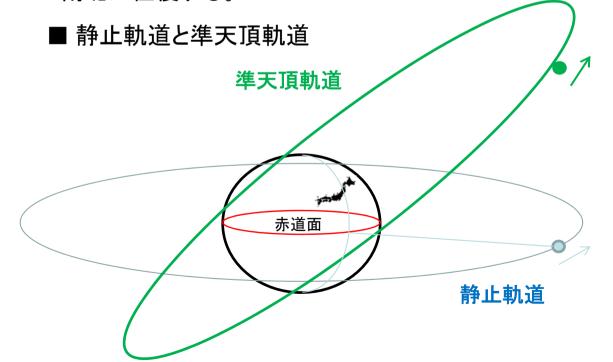

ガリレオ衛星 (欧州)


GPS衛星 (米国)

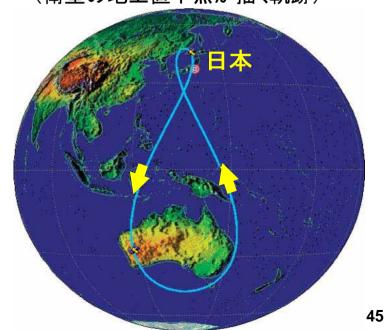
北斗衛星 (中国)

GLONASS衛星 (ロシア)

IRNSS衛星 (インド)

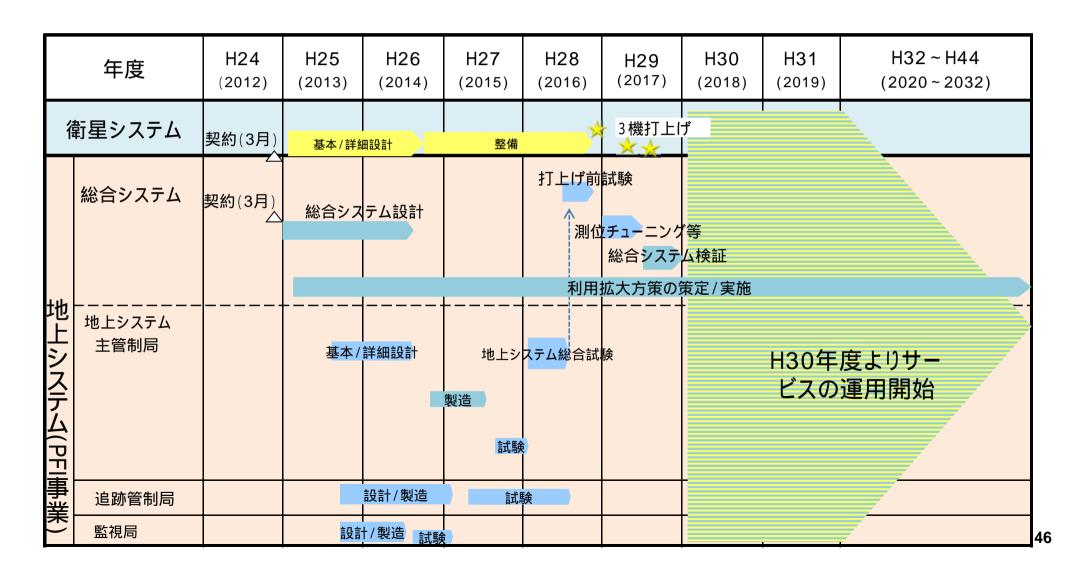

準天頂衛星の整備

〇静止軌道


赤道面上にあり、高度約36,000kmの円軌道で、地球の自転と同期して約24時間で 1周する軌道。そのため、衛星は地上からは静止したように見える。

〇準天頂軌道

静止軌道に対して軌道面を40~50度傾けた楕円軌道で、地球の自転と同期して 約24時間で1周する軌道。子午線(日本の場合は東経135度(明石市))の近傍上空を 南北に往復する。



■ **準天頂軌道衛星の地上軌跡** (衛星の地上直下点が描く軌跡)

準天頂衛星システムの進捗状況と想定スケジュール

- ◆衛星システムについては、平成26年度に基本設計が完了予定。その後、詳細設計を平成26年後半を目処に完了し、本格的な製造に着手予定。
- ◆ また、地上システム・衛星システムを含めた「総合システム設計」が平成26年度前半に完了予定。

測位衛星の用途

今日、測位衛星の利用は、様々な省庁(所管産業界等を含む。)で広く行われている。

(農林水産省、国土交通省)

農機・

建機

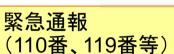
その他、野生生物の行動 把握などにも活用

航空*

* 現在我が国が運用中の航空支援衛星 による航法補強システム(MSAS)も活用

パーソナルナビゲーション

務省)


(国土交通省、法

測位衛星

(警察庁、消防庁、国土交通省)

金融取引

機器制御

安全保障

(防衛省)

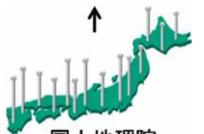
捜査活動

たけピゲーション

民間警備

47

センチメータ級補強(民生利用の例)


内閣府が整備

宇宙システム(衛星)

地上システム

国土地理院 電子基準点

全国の電子基準点(全 1240点)全点を準天頂 衛星対応に改修済

IT農業

自動化のための農耕機 材の精密位置決め、場 所ごとの土壌によって捲 く肥料の変更等

情報化施工

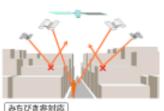
建機の自動化、施工管理の効率化による工期の短縮等

精密測量

センチメータ級補強信号

電子基準点データを元に補強信号を作成

し、準天頂衛星から測位信号と共に送信


することで、静止~移動体の利用者がセンチメータ級の精度の測位を可能にする。

山間部等の携帯電話 サービスエリア外等で の準リアルタイムの測 量の実施等

準天頂衛星「みちびき」対応の測位受信機(例)

- ・準天頂衛星におけるGPSを補完する機能を利用した機器は既に商品化済。
- ・複数の国内メーカが対応。未対応のメーカも、世代交代時に逐次対応予定。

(みもびき非対応) 測位できない場所が発生 ビルがじゃまをして衛星の情報が 受信しにくい

測位率がアップ

日本の真上を通過する「みちびき」 を加え、衛星の情報を受信しやすい

WristableGPS

GARMIN社製品 ForeAthlete 910XTJ

エプソン社製品 ランニングウォッチSFシリーズ(4 機種) (GPS/QZSS(L1C/A) 対応)

Trimble社製品 NET-R9

Panasonic社製品 カーナビStradaR300シリーズ(3 機種) カーナビGorillaシリーズ(7 機種) (GPS/QZSS(L1C/A) 対応)

みちびき受信中は 『GPS』 が 『みちびき』

(参考)QSSのHP http://www.qzss.jp/products/index.html

JAVAD社製品 DELTA / SIGMAシリーズ

利用拡大に向けた取組例(1) (ユーザインタフェース仕様書等の公開)

■ドキュメントの説明

「準天頂衛星システムサービス パフォーマンススタンダード」 準天頂衛星システム全体の性能や信頼性などの情報を記載

「準天頂衛星システムサービス ユーザインタフェース仕様書」

準天頂衛星と受信機間のインタフェース仕様やサービス仕様などの技術情報を記載

「準天頂衛星システムサービス パフォーマンススタンダード/ユーザインタフェース仕様書」の公開

準天頂衛星システムに対応した受信機チップや受信機、ユーザ アプリケーションの開発に必要な技術情 報を提供します。

準天頂衛星システムに対応した受信機や、アプリケーション開発が進み、2018年のサービスインまで に、準天頂衛星システムの利用環境が整い、多くの人々に利用されることを目的とします。

