戦略的イノベーション創造プログラム（II）
革新的深海資源調査技術
研究開発計画

2019年7月 日

内閣府
政策統括官（科学技術 イノベーション担当）
目 次

21. 意義・目的等...3
22. 研究内容...4
23. 実施体制...4
24. 知財管理...4
25. 情報管理...4
26. 評価...5
27. 出口戦略...5
28. 意義・目的等...6
29. 背景 国内外の状況...6
30. 意義 政策的な重要性...6
31. 目標 掲げ...8

32. 背景 国内外の状況...6
33. 意義 政策的な重要性...6
34. 目標 掲げ...8

35. 目標 掲げ...8

36. 目標 掲げ...8

37. 研究開発の内容...10
38. テーマ 1: レアアース泥を含む海洋鉱物資源の賦存量の調査 分析................................10
39. テーマ 2: 深海資源調査技術の開発 (深海 レアアース泥の探泥 抜泥技術)................................10

40. テーマ 3: 深海資源生産技術の開発 (深海 レアアース泥の 探泥 抜泥技術)..............16
41. テーマ 4: 深海資源調査 開発システムの実証...16

42. 実施体制...22
43. 海洋研究開発機構 (JAMSTEC) の活用...22
44. 研究責任者の選定...22
45. 研究体制を最適化する工夫...23
46. 府省連携..23
47. 産業界からの貢献..23

48. 知財に関する事項...24
49. 知財委員会...24
50. 知財権に関する取扱い検討...24
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. フォアグラウンド知財権の取扱い</td>
<td>24</td>
</tr>
<tr>
<td>3. フォアグラウンド知財権の実施許諾</td>
<td>24</td>
</tr>
<tr>
<td>3. フォアグラウンド知財権の移転、専用実施権の設定 移転の承諾について</td>
<td>25</td>
</tr>
<tr>
<td>3. 終了時の知財権取扱いについて</td>
<td>25</td>
</tr>
<tr>
<td>3. 国外機関等（外国籍の企業、大学、研究者等）の参加について</td>
<td>25</td>
</tr>
</tbody>
</table>

3. 評価に関する事項

- 評価主体 | 25 |
- 評価時期 | 25 |
- 評価項目 評価基準 | 25 |
- 評価結果の反映方法 | 26 |
- 結果の公開 | 26 |
- 自己点検 | 26 |
 - 研究責任者による自己点検 | 26 |
 - により自己点検 | 26 |
 - 管理法人による自己点検 | 26 |

4. 出口戦略

- 出口指向の研究推進 | 27 |
- 普及のための方策 | 27 |

5. その他の重要な事項

- 根拠法令等 | 27 |
- 弾力的な計画変更 | 28 |
- 及び担当の履歴 | 28 |
 - | 28 |
 - 担当 | 28 |
 - テーマリーダー（サブテーマリーダー） | 28 |

添付資料

- 資金計画及び積算 | 30 |

- 工程表 | 30 |
研究開発計画の概要

1. 意義・目標

我が国は、四方を海に囲まれ、排他的経済水域（EEZ）を含めると世界第2位の海域を有する海洋国家であり、国土面積の約2倍の海域を管理し、その恩恵を享受して成り立ってきた。海岸から沖合に向けて急峻で深い海が広がっており、そこには、経済社会の持続的な発展に不可欠な海洋鉱物資源の高いポテンシャルが推定されている。我が国の管轄海域に存する深海での希少鉱物資源の開発が経済的に実現可能になれば、我が国の基幹産業の発展に向けた安定供給の確保に加え、安全保障の観点からも大きく貢献することができる。

第1期「海洋課題 次世代海洋資源調査技術」（以下、「第1期」という）においては、海洋鉱物資源として熱水鉱床、コバルトリッチクラスト、レアアース泥を対象として研究開発をスタートし、3年目からは主たる研究開発対象を水深1000m未満の海底型熱水鉱床に絞り込み研究開発を推進した。一方、海洋鉱物資源は深海においても大量に存することが確認されている。例として南鳥島海域のレアアース泥は、我が国の貴重な海洋鉱物資源として注目を浴びているが、存続海域が深海の最も深い部分を占めている。このため、存続海域を深海底から採取し、船上へ効率良く揚鈎する技術の確立も求められている。

本課題における主要目標は、これら深海底の資源のうち、有望と目されるもののまた世界的にも未着手となっている、レアアース泥を含む海洋鉱物資源等を対象とした技術開発とする。すなわち、未だ解明できていない南鳥島海域のレアアース泥の概略資源量評価に必要な調査を行うとともに、資源量調査で明らかになったレアアース泥濃集帯に対し、深海底から船上にレアアース濃集部分を揚泥する技術開発を行うとともに、今後のレアアース泥の広域調査等を実現するために技術として、深海底において効率的に罹動可能とする複数機同時運用システムを構築し、将来の深海鉱物資源開発に必要となる技術を確立するべく挑戦的な研究開発を進めることである。本課題を推進することにより、深海資源の調査効率を飛躍的に6倍以上に向上させ、水深1000m以浅の海域、我が国のEEZの中间を占めるの調査を可能とする世界最先端調査システムを開発し、民間への技術移転を行うとともに、現行の技術では不可能な深海鉱物資源の採泥、揚泥を可能とする技術を世界に先駆けて確立することを目指す。
2．研究内容
主な研究開発項目を以下に記す。研究開発は、次の通り、調査・分析、技術開発、システム実証と大きく2つに分けられたテーマで進めることとするが、テーマ1・テーマ2・テーマ3・テーマ4はそれぞれ独立して進められるではなく、出口戦略となるテーマ1への技術移転を念頭に置き、テーマ間の十分な相互連携を持って進めることとする。

テーマ1︰レアアース泥を含む海洋鉱物資源の賦存量の調査・分析
テーマ2→テーマ1深海資源調査技術の開発
（深海・多複数領域技術、深海底ターミナル技術）
テーマ3→テーマ1深海資源生産技術の開発（レアアース泥の採泥・揚泥技術）
テーマ4→テーマ1深海資源調査・開発システムの実証

3．実施体制
石井プログラムディレクター（以下「ディレクター」という）は、ガバナンス強化の観点からプログラム全体のマネジメントに責任をもち、以下の要領で一元的に遂行する。テーマ1・テーマ2・テーマ3・テーマ4・テーマ5は、民間企業の参画を得て、技術開発及びノウハウ等の蓄積を進める。また、テーマ1は、テーマリーダーを民間から選定の上、民間が主体となり調査・開発システムの実用化、事業化を目標に進める。この目的達成のために、テーマ1は各テーマリーダー及び管理法人代表者を核とした、十分な縦横連携管理体制を構築する。

加えて、内閣府総合海洋政策推進事務局、文部科学省、経済産業省及び独立行政法人石油天然ガス・金属鉱物資源機構（ソラナ、ソラナ）国土交通省及び国立研究開発法人港湾・航空技術研究所（うみそら研）からも、本課題のスタート時より積極的な連携が得られている。

また、技術的・学術的見地からプログラムに関する助言を行う産学官の有識者等から構成される「助言会議」の設置、府省連携の下での「推進委員会」での連携・協力体制の構築を通じ、産学官のオールジャンプ体制で取り組み、日本の未来に繋がる海洋資源調査技術の確立を着実に進めていく。

4．知財管理
知財委員会を管理法人あるいは、管理法人が契約した研究責任者所属機関に置き、発明者や産業化を進める者のインセンティブを確保し、かつ、国民の利益の増大を図るべく適切な知財管理を行う。

5．情報管理
本プログラムを遂行するに当たり、対象範囲を明確にした上でプログラムとして厳格な情報管理体制を構築し、規定類を整備する。併せて、国が定める政府機関等の情報セキュリティ
イ対策のための統一基準群 (平成28年度版)に準拠し管理法人が必要な対応を施すものとする。

6．評価
毎年ガバニングボードにより実施される評価及びプログラム総括主催の評価ワーキンググループによる評価前に ビー による自己点検を実施し、その後、助言会議による各種レビューや、推進委員会における自己評価を行い、適切な緊張感を持って ビー ガバニングボード評価への準備を行う

7．出口戦略
本プログラムで開発した調査・探査技術については、その実用性・効果を検証した上で、民間企業で商業的に利用可能とすべく戦略的に技術移転を行い、「深海資源の産業化モデル」を構築する。技術移転を受けた民間企業は、国内外における深海調査における探査ツールの提供、深海資源調査技術サービスの提供、応用技術サービスの提供、深海資源生産技術サービスの提供等、幅広い機会に活用できるようシステムとしての成熟化を図る。このように産学官の密接な連携を通じて、研究開発の成果が将来にわたって円滑に継承・発展されるような仕組みを整備し、海洋調査産業の更なる活性化を図る。
1. 意義・目標等

(1) 背景・国内外の状況

資源に乏しい我が国は、エネルギー・資源の多くを輸入に頼っており、国民生活や産業構造を支える基盤の脆弱性が指摘されている。その中で、経済社会の持続的発展に不可欠な希少資源である非鉄金属鉱物資源については、その多くを特定の産出国に依存しており、近年の急速な世界的な需要の拡大の中で、我が国への安定供給を確保していく必要がある。

一方、最近の調査・研究により、自国の土地内深海には、経済社会の持続的発展に不可欠な海洋鉱物(レアアース泥を含む)が発見され、鉱物資源としての高いポテンシャルが推定されている。

特にレアアートの供給リスクに対しては、これまでも供給源の多様化、リサイクルの促進、代替材料の開発、備蓄等の対応が講じられ、最近のレアアートの価格は安定的に推移しているものの、構造的な問題の解決には至っていない。故に、これらの対応に加えて、自国の土地内深海で生産できるポテンシャルを見極め、調査から生産に至るまで一連の技術を開発・実証することができれば、我が国の将来における安定供給と安全保障の確保に大きく貢献することが期待される。

さらに、近年、諸外国においては、海洋資源の権益確保や持続可能な海洋の利活用等を目的に、海底探査、海洋研究が積極的に進められており、特に我が国の周辺海域においてその動きが顕著となって来ている。我が国は、これまで世界トップクラスの海洋調査能力の涵養に努めてきたが、諸外国との競争はますます激しくなっており、我が国の強みを更に伸ばして、個々の海洋要素技術をシステムとして統合化するとともに、これを活用した世界に誇る海洋調査サービスを育成し、国際競争力を強化していくことが求められている。

(2) 意義・政策的な重要性

我が国は、世界第2位の海洋国家として、国土面積の約30倍の海域を管理している。沖縄には急峻で深い海が広がっており、特筆すべきは、水深1500m〜2000m海域が全体の30%を占めている事実である(図表1-2参照)。その海域において、コバルトリッチクラスト、メタンハイドレート、レアアート等、海洋資源の高いポテンシャルが推定されている。我が国の管轄海域に敷存する深海での希少鉱物資源の開発が経済的に実現可能になれば、我が国の基幹産業の発展に向けた安定供給の確保に加え、安全保障の観点からも大きく貢献することができる。

平成20年11月に閣議決定された第2期海洋基本計画においても、海洋鉱物資源の開発の重要性について、「これまで培った海洋資源調査技術、生産技術等を更に強化・発展させるとともに、基礎・基盤研究から事業化・実用化までを見据え、水深1000m以深の同技術の開発・実証に向けた取組を世界に先駆けて進める」旨が明記されている。

この道の仕組みの下に、関係府省・産学官が連携して、このような国家的に重要な政策課題に対応した目標の達成に向けてオールジャパンで研究開発を推進し、その成果を民間に
おいて実用可能なシステムとして社会実装させることにより、深海資源開発に対する生産性革命を实现していくことが重要である。また、世界初の深海におけるリモートの複数機同時運用システムを構築し、高解像度による海底下の地層マップの作成技術の開発や、高濃度分布域における資源量評価や賦存域での開発事業を可能とするコア技術の確立を目指すことが重要である。

12. 革新的深海資源調査技術

図表1-1. 革新的深海資源調査技術の全体構想

図表1-2. 日本のEEZ内の水深別専有面積比
(3) 目標：狙い

□ 実現に向けて

・広大で深遠な海洋の状況を統合的に把握するためには、船舶による海面からの調査にとどまらず、衛星の活用や ロボットの果たす役割がますます重要となっており、自動化・遠隔化による探査効率の飛躍的向上に向けて、海洋研究開発は新たなステージを迎えている。

・ロボット技術や最先端のセンサーを駆使した海洋探査で取得されるデータを活用して、人工知能による探査システムの統合的な制御や利用・価値別の表示・可視化を実現することにより、人の手が届かない深海に眠る資源の探査を自在に行うことが可能となり、資源のない我が国にとって政策的な選択肢が広がることが期待される。

・このように、サイバー空間とフィジカル空間の融合を図ることを通じて、深海に固有の極限環境の壁を越えて、広大な海洋がもたらす恩恵を最大限に享受することが可能となり、我が国の経済社会の変革に大きく貢献し、海洋の実現につなげることができる。

□ 第 ①期の成果を利用した以浅の海底全域（以深の国土の 3 倍）に対する調査には 10 年以上必要となるが、第 ①期の成果を利用すれば、さらに広大な以浅の海底全域（国土の 3 倍）であっても調査は 5 年以内で可能となる。また、現在は深海鉱物資源の生産手法は未確立であるが、第 ①期（5年後）の成果を利用すれば世界で初めて生産可能となる。開発された調査技術により得られた深海の広域データを基に、生産技術を活用することによって、我が国の深海鉱物資源生産の効率性を著しく向上するだけでなく、資源確保・資源安全保障において世界的に優位に立てる。

□ 社会面の目標

・広大な海洋の開発・利用は、我が国の経済社会の基盤であるとともに、海洋環境の保全、将来にわたる人類の存続の基盤でもあり、国際的にも海洋資源の権益確保や持続可能な海洋の利活用が重要な課題となっている。

・産学官の密接な連携を通じて、深海における潜在的な資源の開発を可能とするための技術開発・実証、産業化に向けて技術・ソウハウの共有や継承が効果的に進められる仕組みの構築を目指す。

・海の恵みを最大限に享受するための持続可能なモデルを構築するとともに、人類未踏のフロンティアへの挑戦に対して、次代を担う若者を始めとする国民の幅広い興味関心を喚起する。
産業的目標

我が国の基幹産業を支える希少資源であるレアメタルについては、生産のほとんどが特定の産出国に占められており、資源の偏在による安定供給にかかわる課題もあることから、自国の内に賦存する鉱床でレアメタルを生産できるボテンシャルを見極め、調査から生産に至るまで一連の技術を開発・実証することを目指す。これにより、将来にわたるレアメタルの安定供給と資源安全保障の確保に貢献する。

技術的目標

海洋の極限環境下において資源開発を可能とするためには、陸上や浅海では想定されない困難な課題を克服する必要があることから、海洋工学・ロボット工学・資源工学など、多様な分野の知見を総合するとともに、要素技術の開発にとどまらず、将来の事業化を見据えた統合的なシステムの実現を目指す。

制度面等での目標

将来の開発事業によって発生する可能性のある海底泥の拡散状況の予測など、様々な調査・収集方式に対応した環境影響評価のためのルール作りへ貢献する。

グローバルベンチマーク

我が国は、船舶やブイによる地球環境変動の観測、有人・無人による深海潜水調査、地球深部探査船による地震発生帯と海水域生活圈の掘削、海底ケーブルを活用した地震・津波観測監視システムの敷設など、世界トップクラスの海洋調査能力の涵養に注力してきた。

今後海洋調査の主役を担うと期待される技術については、個別技術は諸外国が優れているものの、環境影響評価を含めた様々な技術を組み合わせてトータルで資源調査
を行うシステムは例がなく、① 第 ② 期の成果を更に高度化することにより、世界に誇る海洋調査サービスを提供することができる。

○ 国際的にも極めて事例の少ない、水深 1,500m 以深に存在するレアアースを始めとした深海鉱物資源に焦点を当てて、集中的に研究開発及び技術の実証を実施することにより、我が国の強みを伸ばすことができる。

○ 自治体等との連携

○ 南鳥島は、東京から約 1,800km 離れた我が国最東端に位置し、東京都小笠原村に属する。1,800km の滑走路が整備され、自衛隊の航空機が定期的に発着し、気象庁職員等が常駐している。また、低潮線保全法に基づき、排他的経済水域等の保全及び利用に関する活動拠点として、特定離島港湾施設の整備事業が進められている。
○ 南鳥島周辺海域における探査に際して、補給や人員交代の拠点としての活用を検討することが考えられ、その円滑な実施に向けて、東京都、関係省庁等との連携が重要となる。

2.0 研究開発の内容

テーマ 1：レアアース泥を含む海洋鉱物資源の賦存量の調査・分析

図表 2-1 研究技術開発目標 (1)
研究開発 [技術開発の目的]
概要
南鳥島海域のレアアース泥の高濃度分布域で、開発ポテンシャルの高いサイトの絞り込みを行った上で、テーマ「深海資源産業技術の開発（レアアース泥の採泥・揚泥技術）」等の技術開発に当該サイトの高濃度層の位置や泥質等の情報を提供するとともに、当該サイトの概略資源量の評価を実施する。また、サイト選定に当たって、表層に分布するマンガノジュールの密度度や組織の特徴を検討し、資源としての評価も合わせて行う。

取得データに既存データを加えて、音響層序をもとにした表層堆積物の層相解析と地質学的なマッピング、各種地球科学的指標の特定を実施する。加えて、テーマ「深海資源調査技術の開発（深海複数運用技術、深海底ターミナル技術）」によって導入される、水深8000m域を含む海洋において運用可能なレアアース泥が海底面（高解像度）サブポトムプロファイル（以下、「サブポトムプロファイル」という）調査を実施し、船上的「サブポトムプロファイル」データの有効性を実証する。
なお、これまでに他国が海のレアアース泥の概略資源量の評価を行った報告はない。

（2）体制

図2-1.体制図（1）

実施方法

- 船上において、海底堆積物のうち、高いレアアース泥濃度を示す可能性がある層の層厚分布を把握するため、調査船を用いて、測線間隔10km分1つの層、約60mで取得されている既存データの間隔を数100mまで狭める海洋調査を100m～1000m深度に実施する。また、得られた「サブポトムプロファイル」データの詳細分析・評価を行う。
- 上記のデータを用いて、ピストンコアアップによりレアアース泥・マンガノジュールの連続性把握を行う。具体的には、調査船を用いて、過年度の調査において10km分1km分2km分、約2kmのグリッドで採取されている間隔を1km分まで10cm調査により浅部
濃集の可能性が指摘されるエリアについては数ヶ月までを挟む海洋調査を2018-2020年度に実施する。また、得られた海底サンプルデータの分析評価を行う。

2020年度航海で海底表層に大量に分布することが明らかになったマンガンノジュールに関して、その分布や濃度組成を把握するために2018-2020年度に定量的な調査を行う。また、マングースリ層による海底面（高解像度）AUV調査において行われる反射強度の分析を行うと同時に、画像データを用いた調査解析も合わせて実施する。

上記及びの結果を分析し、2018年度にレアアース泥の概略資源量の評価を行う。

2020年度までには、上記も合わせた概略資源量の評価を行う。

及びの評価を参考に、テーマで導入するマングースリ層による海底面（高解像度）AUV調査を実施し、データの有効性を実証する。

実施に当たり、計画策定はテーマリーダーを中心として国立研究開発法人産業技術総合研究所（産総研）が行い、関係機関が連携する。運用調査は産総研を中心に実施し、試料分析については、関係機関が主となって計画を進める。

(3)関係省庁
内閣府、文部科学省、経済産業省、防衛省（防衛装備庁）
図表 2-3.研究 [技術開発目標 (1)深海資源調査技術の開発]

【1】研究開発 [技術開発の目標]

【概要】

水深 2,000m以深の海洋において、精密な海底地形や海底下構造を複数回で効率的に調査できる深海 AUV 複数運用技術や長期間安定に調査可能な深海底ターミナル技術を開発し、社会実装可能な深海資源調査システムを構築する。具体的には深海 AUV 複数運用技術に関しては、AUV の複数機運用を実証し、複数機運用のための技術的な目処を立てるとともに深海底ターミナル技術に関しては、目標として一日以上連続運用が可能な深海底ターミナル技術を実証し、運用のための技術的な目処を立てる。そのためステップバイステップの手法を用い以下の中间・最終目標を設定し、研究の進捗状況により研究計画の内容を各年度で調査し、開発を進める。

第一段階：複数のAUVに対して、同時に測位と通信を一括して行えるシステム及び深海底ターミナル技術を開発し、段階的に水深 6,000mまでの海域で実証を行う。

第二段階：第一段階で実証できた開発技術を発展させ、技術的な有用性の確認のために、水深 6,000m 仕様の深海底ターミナルを用いて水深 10,000m の海域で長期航の実証試験を行うとともに、水深 10,000m までの海域において複数の複数運用技術の実証・運用を行う。
創出される成果：海底資源調査は、特に第Ⅰ期において熱水鉱床を主なターゲットとしていたが、それにより深海の海底地形（オーシャン）が1機物系となるシステムとして構築されている。一方、第Ⅱ期では、複数の機器を交互に制御・測位して運用しているが、この手法では機数が増えても制御・測位に遅延が生じ、制御困難な状況が生じる。そこで、本技術開発では、1機に対して複数の機器を同時制御・測位可能な統合システムを開発する。
また、音響通信機能を飛躍的に高めることにより、データを高速で伝送できる、準リアルタイムデータ伝送を可能とする。
結果、複数機運用の効率化が実証・実用化され、世界最先端の技術水準となる。さらに世界に先駆け、以深での海中充電技術やドッキング技術などの海底ターミナル技術の開発により、母船への無着揚収による長時間運用が可能となり、運用の更なる高効率化が期待できる。

社会への波及効果：本技術の確立により、複数機運用技術が未だ確立されていない。我が国の民間海洋調査会社等への実装が可能となり、深海調査活動の経済性が飛躍的に向上する。また、段階的に国内企業における音響通信等の標準化を推進すること、海底ターミナルの産業化を目指した実証をすることにより、水産、土木建設等への技術展開、新たな産業振興が期待される。

(2)体制

図表2-6体制図(1)
実施方法

開発期間後の本技術の社会実装を確実に可能とするため、及び開発をスピーディーに進めることで、技術開発は、原則技術成熟度 (TRL: Technology Readiness Level)3以上の各要素技術を用い、それらの要素技術の組み合わせにより開発の目標を達成する手法を用いたシステム技術開発を行う。それとともに、第 3期において複数用途手法の研究開発を実施しているうち、そら研や民間企業を含めた産学官で連携して効率的に開発を実施する。なお、目標を達成するため、以下に示す要素技術に対するシステム開発を実施する。

・深海資源調査技術開発に必要な基盤的ツール
初めに、深海資源調査技術開発の中心的かつ必要不可欠な装置である基盤的ツール：深海用 (無人機体)、洋上中継器、潜水支援装置 (音響測位装置等)を導入する。

・深海 1機で複数の機を同時に運用 (世界最高水準)するため、複数の制御に必要となる通信技術、測位技術の要素技術を用いた同時制御システム技術を開発する。また、ミッションとして、既存のセンサー技術やこれまでの研究開発装置を搭載・装備し、精緻な海底地形や海底下構造の計測や環境モニタリング等を実施するためのシステム技術開発を行う。また、海底探査の高効率化・高精度化のための複数機の連列制御技術の開発を行う。さらに、運用技術開発として調査の効率化に不可欠な、長期間の運用を可能とするが長期運用が可能な開発を実施する。

・深海底ターミナル技術の開発
深海におけるの日以上の長期運用を達成するための。深海底での充電及びデータ伝送を可能とするシステム技術開発を実施する。

関係省庁
内閣府、総務省、文部科学省、経済産業省、国土交通省
テーマ2-2 レアアース泥の採泥・揚泥技術

水深〜6,000mからのレアアース泥回収技術の確立
産業化を検討するに値する検証データ・指標の提供

最終目標

2018〜2019
全体システム
概念設計

2019〜2020
全体システム調整
性能試験

2021〜2022
水深1,000〜3,000m

図表2-7 研究開始技術開発目標

(1) 研究開発 [技術開発の目標]

概要

地球深部探査船「ちりゅう」を用い、2021年度末までに深海底に賦存するレアアース泥を、世界に先駆けて連続的に採泥・揚泥する技術の確立に貢献する。特に海底泥 (レアアース泥を含む) を採泥・揚泥しやすい状態にする解泥から、揚泥管内に取り込む採泥、その後揚泥管内の流体の循環に乗せて船上まで運ぶ揚泥までの一連の作業を、実海域で実証することで、現場海域での解泥・採泥・揚泥の各々の作業に要する機器の仕様と効率の関係を確認し、効率良くレアアース泥を回収する手法の構築に資する。

- 5年間で達成する定量的な目標：レアアース泥の解泥・採泥・揚泥を行う技術の実現に資する知識を蓄積する。
- 創出される成果：レアアース泥の解泥・採泥・揚泥のノウハウと、産業化に向けた解泥・採泥・揚泥に関する技術及び基礎データの蓄積。
- 技術水準の位置付け：2020年8月、2022年10月により沖縄の海床にある熱水鉱床から連続揚鉱に成功したが、本研究開発で目指すのは、水深6,000m〜7,000mに存在し、粘性度の大きいレアアース泥の解泥・採泥・揚泥技術に資する知
見の蓄積である。このような取組は、国内外ともに世界初であり、この成果を利用すれば世界で初めて深海銅鉱資源の生産が可能となる。

- 社会への波及効果：レアアース泥等海底資源開発の産業化に向けた基礎的技術が確立され、産業活性化のみならず、産業立国日本に不可欠な銅鉱資源の安定供給に貢献し、他国の政策に左右されない資源安全保障への寄与も期待される。

- 技術の現状 □□レベルと計画終了時のレベル（技術開発の進捗度合）
 - 水深 2000m 以深の深海における解泥技術：□□□□□□□□□
 - 水深 2000m 以深の深海における採泥技術：□□□□□□□□□
 - 水深 2000m 以深の深海における揚泥技術：□□□□□□□□□

(2)体制

実施方法】
研究開発を期間内に完了するため、また開発期間後の産業化の可能性をより高めるために、当初から民間の積極的な参加を促す。
全体方針の決定に当たっては、外部の有識者の意見等を参考にしつつ、計画全体が技術的に整合性の取れたものになるよう検討、精査を行う。
全体方針決定後は、個々の要素技術に実績のある企業の知見を活用しつつ、概念検討に必要な数値・情報を実験、数値計算等により収集し、概念設計を完成させる。
概念設計完成後の設計・製作期においては、□□□□□□□□管理・監督の下、民間企業が一体となって役割分担できる体制を構築し、計画を推進する。
なお、目標達成するため、以下の工程を実施する。

- 南鳥島沖のレアアース泥及びその上位堆積泥の力学的特性を把握し、レアアース泥の解泥・採泥・揚泥に必要となる基礎データを得るとともに、数値計算や各要素技術に対する実験を行い、解泥・採泥・揚泥に適する各種機器の必要条件を絞り込む。
個々の要素の条件を調整し、環境負荷軽減にも配慮した最適な概念設計を作成する。

- 概念設計を基に水深 6,000 m 級深解泥・採泥・揚泥機器の仕様を確定し、各機器の設計・試作を行う。解泥機については、陸上での性能確認後に、必要であれば浅海域で解泥試験を行い、その性能を確認する。さらに、必要な揚泥管の強度試験・実機相当並びに揚降ツールの設計を行う。
- 試作した採泥・揚泥機器の陸上での性能確認試験を実施するとともに、必要な揚泥管の試作を行う。さらに、揚降ツールの試作及び船上ハンドリング確認を行う。
- 解泥・採泥・揚泥の全体システム調整のための性能試験を実施し、全体システムの目処をつけ、最終実証海域(水深)を決定する。必要に応じ、各機器の改良を行う。
- 水深 6,000 m 程度の海域において、海底泥の解泥・採泥・揚泥の統合試験を行い、揚泥性能を確認する。技術課題及び運用上の課題を抽出し、機器改良や運用マニュアルの改訂を実施する。
- 最終実証試験海域に必要な揚泥管を製作する。
- レアアース泥または類似の海底泥の解泥・採泥・揚泥の統合試験を行い、所期の揚泥性能を有することを確認する。
- 取得された各機器の各種パラメータとレアアース泥揚泥量に関する基礎データを用いて、水深 6,000 m からのレアアース泥揚泥において、シミュレーション等により全体システム及び各要素技術（解泥・採泥・揚泥）が所期の性能を達成できることを確認する。

(3)関係省庁

内閣府、文部科学省、経済産業省、国土交通省、環境省
テーマ3 海底資源調査・開発システムの実証

図表2-9 研究·技術開発目標（Ⅱ）

（1）研究開発·技術開発の目標

概 要

本プログラムの出口としては、産業界の主体的な参画の下に、開発された技術を継承・発展させつつ、様々なニーズに対応した海洋調査の受託や将来に向けた深海資源の探査・開発が行えるような体制を構築し、深海資源の産業化モデルの構築に道筋を付けることを目指す。そのためには、テーマⅠ·テーマⅢ·テーマⅣから随時得られる成果を踏まえながら、ユーザーの要望や新たな技術の進展に的確に対応できるよう調査・開発システムの最適化を図り、テーマⅡ·Ⅲの研究開発の進め方にフィードバックしていく機能が求められる。これにより、ニーズとシーズのマッチングを図りながら、開発された技術の効果を活かした海洋開発を実現する仕組みを構築する。開発された成果は、適切な民間企業を選定して段階的に技術移転を行うこととし、これを受ける民間企業が調査サービスの提供や将来の資源開発に向けた事業検討を行うことを可能とすることが必要である。この一連の流れをテーマⅣにおいて集約して出口戦略を明確化していくとともに、実海域における調査・開発システムの統合的な実証を通じて民間への技術移転を行うことにより、産業化に向けて段階的にステップを踏んでいくことを目指す。その際、出口となる新たな海洋調査の受託や深海資源の産業化モデルを構築するため
には、民間企業自らがコストを抑えた調査を行う手法を開発し、効率的な運用を目指して改善を積み重ねることができるようにすることが必要であり、プログラムの初期段階から積極的な参画を求めていく。

(2)体制

【実施方法】
公募により、次世代海洋資源調査技術研究組合（J-MARES、JGI）及び東京大学が、主要実施機関として選定された。J-MARES は以下の Ø 題目すべて、東京大学が動向調査・レアアース泥関係及び環境モニタリングに係るコスト削減関係を担当する。

加えて、出口戦略・産業化モデル・システム実証強化のために、伊藤忠商事 (株) (伊藤忠) よりテーマリーダーを、第 Ø 期より統合海洋資源調査システムの実証に参画している Ø も代表して Ø よりサブテーマリーダーを招聘し、より一層の推進を図る。

国内外の動向の調査・分析
第 1段階（Ø～Ø年度）においては、深海資源開発を巡る国内外の動向を総合的に調査・分析し、産業化に向けた課題を抽出する。特に、経済性に関連して、レアメタルの今後の需給見通しや価格動向について様々なシナリオを想定しつつ分析を行うとともに、市場開拓や経済性向上の可能性について幅広く情報を収集する。さらに異分野融合を促進するため、他業種における先端技術を取り入れて応用したり、逆に他分野へのスピンオフを図ったりすることができるよう関連技術の動向を把握しつつ、最適なパートナーとの連携を強化していく。

環境への配慮
環境対策に関連して、陸上での採掘と海中での採掘を比較・検証する。また、計画初年度より、Ø 期の成果である環境影響評価手法 (開発機材を含む)を活用し、将来的にレアアース泥回収実証が予定される海域等において、事前の環境モニタリング (画像による生態系調査や遺伝子検査による生物分布調査等) を開始する。
それらの取得データを基に、国際的な動向を踏まえ、将来の産業化を見据え、特に環境保全と経済性の両立に留意しつつ、環境負荷軽減のための手法を検討する。

産業化モデルの構築
深海資源開発を事業化に向けて軌道に乗せていくためには、様々な困難な課題を克服するための技術力・資金力・マネジメント力が必要となる。世界との競争に打ち勝つためには、特色ある技術を組み合わせて最適なシステムを構築し、各企業の持てる強みを組合していくことが不可欠である。海洋工学・資源開発に関連する企業はもとより、他分野の意欲的な企業の参画も得て、戦略的なパートナーシップを構築し、円滑な産業化を計画することが重要である。このような産業化モデルを構築していく中で、オープン・クローズ戦略の明確化を図り、秘匿すべき情報やノウハウ、特許化により権利を専有すべき知識財産、国際標準化により共有化・普及すべき手法・型式を極めて、それらの管理・活用方策を明確にしていく。
例えば、国立研究開発法人水産研究・教育機構（水研機構）は、海底調査技術、特に海底ターミナルを含む○○○の長期運用システムの水産資源調査、養殖生産工程等への応用をすでに検討している。

システム実証
000年度において、中核となる民間企業の参画の下、それまでに開発された技術を集大成して、深海域において統合的な試験を行うことにより、深海資源の産業化モデルの構築に向けた総合的なシステム実証を行う。もとより、リアリズムが賦存する南鳥島周辺海域（水深○□□□□〜□□□□）においてシステム実証を行うことが最も効果的であり、将来の産業化に向けた見通しを確実なものとするためにこれを目指す。但し、資金的・時間的な制約の中で研究開発成果の最大化を図る観点から、最終的なシステム実証の対象・実施海域の選定については、0〜2年目の評価の段階において、それまでに得られた成果と社会的動向・見通しに基づいて、客観的に判断する。
このようなプロセスを経て、蓄積された技術やノウハウの民間への移転を円滑に進め、将来の産業化に向けて技術の継承・発展を支える基盤を確固たるものとする。

③関係省庁
内閣府、総務省、文部科学省、農林水産省、経済産業省、国土交通省、環境省、防衛省（防衛装備庁）、外務省
３．実施体制

(1) 海洋研究開発機構 (JAMSTEC) の活用

本件は、JAMSTECへの運営費交付金を活用し、図 3-1の体制で実施する。

JAMSTEC は、プログラムディレクターや推進委員会を補佐し、研究開発計画の検討、研究
開発の進捗や資金の管理、自己点検の事務の支援、評価用資料の作成、関連する調査・
分析など、必要な協力を行う。加えて、今後の海洋における研究開発の知見等を活用した
船舶の共同利用の調整等を行い、研究開発のより一層の効率化を進める。JAMSTEC は、
JAMSTEC の事業費である交付金と他の交付金を区分管理し、独立行政法人通則法 (平成十一
年七月十六日法律百三号) 第三十九条の規定に基づく監査を受ける際には、当該区分管
理も踏まえて適切な経理が行われているか監査を受ける。

(2) 研究責任者の選定

・記載した研究開発を最も効率的に実施するために、研究開発項目ごとに以下の研究
機構を締結し、府省連携体制を構築する。開発課題によっては、民間からの知見、技
術を広く取り入れるため、公募により実施機関を選定する。

　・(Ⅰ) レアアース泥を含む海洋資源の賦存量の調査・分析については、地質調査経
験値において選出したテーマリーダーを中心に JAMSTEC と産総研が計画策
定を行い、JAMSTEC が連携する。運用調査は産総研を中心に実施し、試料分析につ
いては JAMSTEC が主体となり、高知コアセンターを共同運営する高知大学とともに計
画を進める。

　・(Ⅱ) 深海資源調査技術の開発については、JAMSTEC が中心となり、民間企業連
合とともに実施する。

　・(Ⅲ) 深海資源生産技術の開発については、JAMSTEC が中心となり、民間企業連
合とともに実施する。

　・(Ⅳ) 深海資源調査・開発システムの実証については、公募により、次世代海洋資
源調査技術研究組合 (JAMSTEC) 及び東京大学が、主要実施機関として選定された。
JAMSTEC は 課題を、東京大学は動向調査 (レアアース泥関係) 及び環境モニタ
リングに係るコスト削減を担当する。
(3) 研究体制を最適化する工夫

SIP革新的深海資源調査技術の推進体制

図表301 実施体制

(4) 府省連携

本プログラムは、内閣府、総務省、文部科学省、農林水産省、経済産業省、国土交通省、環境省、防衛省（防衛庁）からなる府省の連携により実施する。すでに、前記府省による推進委員会が設置、開催され研究開発計画に対しての活発な議論が行われている。内閣府総合海洋政策推進事務局、文部科学省、経済産業省及び独立行政法人石油天然ガス・金属鉱物資源機構（JOGMEC）、国土交通省及び国立研究開発法人海上・港湾・航空技術研究所（うみそら研）からは、本課題のスタート時より積極的な連携が得られており、加えて、総務省や農林水産省（水産庁）からの意欲的な提案が提出されている。

(5) 産業界からの貢献

今後の産業界からの貢献（人的、物的貢献を含む）は、研究開発費の総額（国と産業界からの貢献との合計）の20%程度を期待している。
4. 知財に関する事項

(1) 知財委員会

△ 知財委員会は、それを設置した機関が担った研究開発成果に関する論文発表及び特許等（以下「知財」）いう。の出願・維持・実施許諾等の方針決定等のほか、データやノウハウを含む研究成果の管理・活用に関する調整等を行う。
△ 知財委員会の詳細な運営方法等は、その他において定める。
△ 個別の特許等の申請手続きについての判断・調整は、ほか・規定が行うが、プログラム終了後においては、各研究機関に設置された研究機関知財委員会にて審議を行う。

(2) 知財権に関する取り決め

△ は、秘密保持、バックラウンド知財権（研究責任者やその所属機関等が、プログラム参加前から保有していた知財権及びプログラム参加後に取得した知財権）、フォアグラウンド知財権（プログラムの中で事業費により発生した知財権）の扱い等について、委託先との契約等により定める。

(3) フォアグラウンド知財権の取扱い

△ フォアグラウンド知財権は、原則として産業技術力強化法第22条第1項を適用し、発明者である研究責任者の所属機関（委託先）に帰属させる。
△ 再委託先等が発明し、再委託先等に知財権を帰属させる時は、知財委員会による承諾を必要とする。その際、知財委員会は条件を付すことができる。
△ 知財権に事業化の意志が乏しい場合、知財委員会は、積極的に事業化を図る者による知財権の保有、積極的に事業化を図る者への実施権の設定を推奨する。
△ 参加期間中に脱退する者に対しては、当該参加期間中に事業費により得た成果（複数年度参加の場合は、参加当初からの全ての成果）の全部または一部に関して、脱退時に無償譲渡されること及び実施権を設定できることとする。
△ 知財権の出願・維持等にかかる費用は、原則として知財権者による負担とする。共同出願の場合は、持ち分比率、費用負担は、共同出願者による協議によって定める。

(4) フォアグラウンド知財権の実施許諾

△ 他のプログラム参加者へのフォアグラウンド知財権の実施許諾は、知財権者が定める条件に従い（あるいは、「プログラム参加者間の合意に従い」）、知財権者が許諾可能とする。
△ 第三者へのフォアグラウンド知財権の実施許諾は、プログラム参加者よりも有利な条件にはしない範囲で知財権者が定める条件に従い、知財権者が許諾可能とする。
△ 当該条件などの知財権の対象が研究開発の推進（研究開発のみならず、成果の実用化・事業化を含む）に障害を及ぼすおそれがある場合、知財委員会において調整し、合理的な解決策を得る。
(5) フォアグラウンド知財権の移転、専用実施権の設定・移転の承諾について
 産業技術力強化法第 ①条第 ②項第 ②号に基づき、フォアグラウンド知財権の移転、専用実施権の設定・移転には、合併・分割による移転の場合や子会社・親会社への知財権の移転、専用施実権の設定・移転の場合等(以下、「合併等に伴う知財権の移転等の場合等」という)を除き、①①①①への報告を求める。

(6) 終了時の知財権取扱いについて
 研究開発終了時に、保有希望者がいない知財権等については、知財委員会において対応(放棄、あるいは、①①①①による承継)を協議する。

(7) 国外機関等(外国籍の企業、大学、研究者等)の参加について
 適切な執行管理の観点から、研究開発の受託等にかかる事務処理が可能な窓口又は代理人が国内に存在することを原則とする。

5. 評価に関する事項

(1) 評価主体
 ①①と ①①①①等が行う自己点検結果の報告を参考に、ガバナリングポートが外部の専門家等を招いて行う。この際、ガバナリングポートは分野又は課題ごとに開催することもできる。

(2) 実施時期
 事前評価、毎年度未の評価、最終評価とする。
 終了後、一定の期間(原則として ②年)で経過した後、必要に応じて追跡評価を行う。
 上記のほか、必要に応じて年度途中等に評価を行うことも可能とする。

(3) 評価項目・評価基準
 国の研究開発評価に関する大綱的指針(平成 ①年 ①月 ①日、内閣総理大臣決定)らを踏まえ、必要性、効率性、有効性等を評価する観点から、評価項目・評価基準は以下のとおりとする。
 評価は、達成・未達の判定のみに終わらず、その原因・要因等の分析や改善方策の提案等も行う。

 意義の重要性、①①の制度の目的との整合性。
 目標(特にアウトカム目標)の妥当性、目標達成に向けた工程表の達成度合い。
 適切なマネジメントがなされているか。特に府省連携の効果がどのように発揮されているか。
 実用化・事業化への戦略性、達成度合い。
 最終評価の際には、見込まれる効果あるいは波及効果、終了後のフォローアップの方
法等が適切かつ明確に設定されているか。

(4) 評価結果の反映方法
- 事前評価は、次年度以降の計画に関して行い、次年度以降の計画等に反映させる。年度末の評価は、当該年度までの実績と次年度以降の計画等に関して行い、次年度以降の計画等に反映させる。
- 最終評価は、最終年度までの実績に関して行い、終了後のフォローアップ等に反映させる。
- 追跡評価は、各課題の成果の実用化・事業化の進捗に関して行い、改善方策の提案等を行う。

(5) 結果の公開
- 評価結果は原則として公開する。
- 評価を行うガバニングボードは、非公開の研究開発情報等を扱うため、非公開とする。

(6) 自己点検
- 研究責任者による自己点検
 - の中で自己点検を行う研究責任者を選定する(原則として、各研究項目の主要な研究者・研究機関を選定)。
 - 選定された研究責任者は、の中での評価項目・評価基準を準用し、前回の評価後の実績及び今後の計画の双方について自己点検を行い、達成・未達の判定のみならず、その原因・要因等の分析や改善方策等を取りまとめると。
- の中で自己点検
 - の中で研究責任者による自己点検の結果を見ながら、かつ、必要に応じて第三者や専門家の意見を参考にしつつ、の中での評価項目・評価基準を準用し、の中で自身、の中で及び各研究責任者の実績及び今後の計画の双方に関して自己点検を行い、達成・未達の判定のみならず、その要因・要因等の分析や改善方策等を取りまとめる。その結果をもって各研究主体等の研究継続の是非等を決めるとともに、研究責任者等に対して必要な助言を与える。これにより、自律的で改善可能な体制とする。
 - これらの結果を基に、の中はの中での支援を受けて、ガバニングボードに向けた資料を作成する。
- 管理法人による自己点検
 - の中で自己点検は、予算執行上の事務手続を適正に実施しているかどうか等について行う。
6 外貿戦略

(1) 出口指向の研究推進

○ 産学官一体となって Ichimmei を推進することにより、国際的に競争力を有する要素技術を開発し、システムとして統合化することを通じ、海洋調査産業を牽引する主体となる民間企業等を効率的に育成する。

○ とりに得られた新たな調査技術・ノウハウの発展が効果的に行われるよう、探査サービス会社、探査機器製造会社、海洋エンジニアリング会社などの民間企業に対し、技術の態様等に応じて戦略的に技術移転を行い、自治体や公的機関での活用や公共事業での利用も念頭に置き、海洋調査産業を活性化する。

○ 本プログラムに参加する企業等から、特定の施策（人的賛献、現物支給、提供貢献等）が得られるよう、積極的に働きかける。

○ プロックに搭載される蓄電池や自動制御技術を始め、海洋以外の分野における急速な技術の進展と連携していくことが効果的であり、これらを積極的に取り込んでオープンイメージが起きるように研究開発を進める。

(2) 普及のための方策

○ 本プログラムにおける技術開発の成果については、オープン・クローズ戦略に配慮しつつ、実用化を目指した幅広い活用が可能となるよう仕組みを整備する。

○ 通信、制御等に関する技術開発に当たっては、関連機関と連携しつつ、プロトコル等の共通化等、内外の知見を取り込み、かつ、より広範なユーザーが使用可能なシステムを作り上げる。

○ レアアース泥の回収技術については、特許化を目指し、核心的な部分はしっかりと知的財産権を押さえつつ、当該手法の実施手順書等は整備し、幅広く民間企業で実施できるようなアウトプットを作成する。

○ 銅物資源開発に伴う環境モニタリング等の技術については、国際標準化を目指して、国内外で幅広く利用できる環境を整える。

7 その他の重要事項

(1) 根拠法令等

本件は、内閣府設置法 (平成 20年法律第 42号) 第 1条第 1項第 1号の 1 科学技術イノベーション創造推進費に関する基本方針 (平成 20年 10月 30日、総合科学技術・イノベーション会議)、科学技術イノベーション創造推進費に関する実施方針 (平成 20年 10月 30日、総合科学技術・イノベーション会議)、戦略的イノベーション創造プログラム運用指針 (平成 20年 10月 30日、総合科学技術・イノベーション会議ゲバニングボード)に基づき実施する。
（2）弾力的な計画変更
本計画は、成果を最速かつ最大化させる観点から、臨機応変に見直すこととする。
（3）○○及び担当の履歴

石井 正一
（xxxx年 月〜）

東 垣
（xxxx年 月〜）

担当参事官（企画官）

古田 裕志
（xxxx年 月〜 xxxx年 月）

江頭 基
（xxxx年 月〜）

佐々木 亨
（xxxx年 月〜）
担当

田中亜紀
（2018年4月〜）

松本 一紀
（2018年6月〜）

加賀谷 一茶
（2018年6月〜）

テーマリーダー/サブテーマリーダー

テーマ ippo
荒井 昇作
（2018年4月〜）

テーマ ippo サブリーダー
町山 栄章
（2018年4月〜）

テーマ ippo
大澤 弘敬
（2018年4月〜）

テーマ ippo サブリーダー
藤原 敏文
（2018年4月〜）

テーマ ippo
川村 善久
（2018年6月〜）

テーマ ippo サブリーダー
澤田 郁郎
（2018年6月〜）

テーマ ippo サブリーダー
許 正憲
（2018年6月〜）

テーマ ippo
松川 良夫
（2018年6月〜）

テーマ ippo サブリーダー
河合 展夫
（2018年6月〜）
2019年度資金計画

【2018年度 合計 5,280百万円】
（内訳）

- 研究費等 (一般管理費、間接経費を含む) 5,000百万円
 （研究開発項目毎内訳）
 (A) 研究開発結果の調査・分析 3,000百万円
 (B) 深海資源調査技術 1,000百万円
 (C) 深海資源生産技術 200百万円
 (D) システムの実証 180百万円
- 製造・工場設置費 100百万円
- 事業推進費（人件費、設備費、会議費等） 100百万円
- 事業の充実に向けた取組に必要な経費 0百万円
（合 計） 5,280百万円

工程表

<table>
<thead>
<tr>
<th>計画年度</th>
<th>2018年度計画</th>
<th>2019年度計画</th>
<th>2020年度計画</th>
<th>2021年度計画</th>
<th>2022年度計画</th>
<th>第2次SP以降</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 - 1)テーマ1: レアアース磁を含む海洋資源の調査・分析</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2020年度までに、海洋資源を含むレアアース磁石の調査を進め、データ分析を行い、資源の潜在価値を評価する。
技術成熟度による技術研究開発の推進

- プロジェクト開発の効率的な推進を目的とし技術研究開発の指標として、API（American Petroleum Institute:米国石油協会規格）の作成したTRL（Technology Readiness Level:技術熟成度）の考え方を導入する。
- プロジェクト開発の開発期間や最終目標に合致するようにTRLの内容を判断した開発を進めることにより研究開発・技術開発・運用技術の積み分けと開発の効率化、また評価結果の明確化の効果が期待できる。