(社会像5)地域における新たなくらしの基盤

Society5.0を実感できる「デジタルスマートシティ」の実現

フィジカルとサーバーを融合する全体アーキテクチャ

リファレンスアーキテクチャモデル横展開

東京オリンピック・パラリンピック 大阪・関西万博 の活用

国の支援、自治体のリーダシップ プランナー、市民参画、地方大学 など地域拠点の連携が重要

地方大学は地域の課題に分野協働、行政・企業の橋渡しに積極的に関与 新たな存在価値

デジタルスマートシティの構築 ユニバーサル・デザインによる安心・安全 最新技術を駆使した移動制約からの解放 健康・快適社会の実現 持続可能な低炭素型社会 インフラコストと安全性の両立 レジリエントな街の実現 地域の産業力強化

(社会像6)ストレスフリーなモビリティ

交通事故を減らし、死傷者をなくし、誰もが自由に移動して目的を果たす MaaS (Mobility as a Service) / CASE*

1oT車両情報等の移動式と 定置式を組合せた社会計測

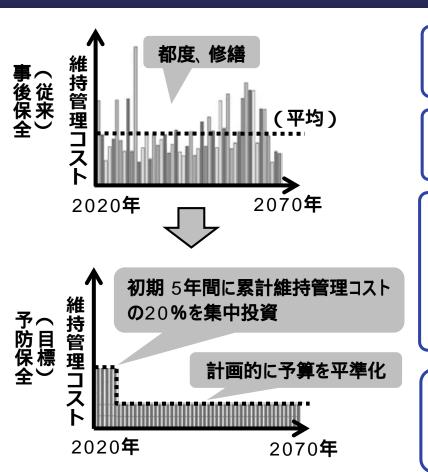
衛星データ等のビッグデータ、 既存統計データを活用する データ連携基盤

死亡事故ゼロ

交通渋滞解消

過疎化が進む地区

ライドシェアシステムや自動運転 保育・学童・介護移動支援サービス


世界に誇れる「つくばモデル」の早期実現

つくば市とその周辺地域で次世代自動車交通基盤・プラットフォーム整備中

16

(社会像7)インフラの維持とレジリエンスの強化

産業界の経営力や技術・サービスという「民間活力を導入する仕組み」を 技術的要因だけでなく、資金・人材・法的枠組などの阻害要因解決へ

インフラストック効果を評価

レジリエンスと持続可能なインフラ維持を実現

アセットマネジメント+ 予防保全

民間企業参画の環境整備

BIM/CIM、建設時・運用時の1oT情報

インフラ情報プラットフォーム整備 労働生産性・安全性の向上 高齢者・外国人の就労機会増大 グローバル市場への展開

人材育成の環境づくり

地域大学におけるICT活用教育 作業員のICT技能の向上支援

(基盤1)データ駆動型社会構築に必要な環境基盤

プライバシー、サイバーセキュリティ、リテラシー、AI利活用の環境

パーソナルデータの利活用とプライバシー保護の両立

利活用するプロセスに関する環境整備

ex. パーソナルデータの提供等にインセンティブを 与えるような業者の育成、マイナンバーの活用

サイバーセキュリティとサプライチェーンのトラスト基盤

一般の企業や事業者にも高度なサイバーセキュリティ対策サプライチェーンを形成する事業者の組織、プロセス、ヒト・モノ等の状況を客観的に認証、監査を行う機関も必要

個人や社会のサイバーセキュリティ意識の向上

個人もセキュリティ維持の責務を持つことの啓発サイバーリスクへの基本動作を子供の頃から身に付ける

AI利活用環境の整備

AI間の交渉、協調、連携のための環境整備 そのための認証、通信、記録等の社会インフラ整備

(基盤2)データ・システム連携の基盤

Society5.0実現に向けたデータ利活用の円滑な推進 データ連携基盤の導入・運営において考慮

- **◇** 公的データの公開
 - 新事業・新サービス創出につながるデータの優先度を上げて整備
 - ex. 外国人旅行者の出入国、移動データの即時公開 観光業サービスのイノベーション
- 民間の協調領域 データの囲い込みに対応したデータ提供のためのインセンティブ
- データの健全な利活用

 法人や個人のユーザ認証とアクセス管理の仕組みの整備
- → スピード重視のデータ連携基盤整備 特定分野のデータについて国の基盤以外のルートも可 民間のデータセンター活用、競争原理を
- **海外のプラットフォーム活用**日本が得意な分野等で海外のプラットフォームの一部を使うことも現実解
 海外プラットフォーマーによるデータ取得には監視と対応が必要
 19

(基盤3)データクリエーションと要素技術の基盤

データ駆動型社会の構築、データ・システム連携に必要な 応用分野の付加価値実現のための基盤(通信、部品・材料等)

ニューロコンピューター ト子コンピューター

学習コストと膨大な消費電力

立ち遅れている分野では国際連携も

革新的なハードウェア開発 デバイス・ソフト・システム等

日本が優位にある注力分野

高機能素材、新材料

バイオサイエンス

(マイクロプロセッサ、センシング)

測位技術

ロボティクス

(3次元位置情報)

組合せ(システム化)による性能向上

⇒ イノベーション創出には組合せ技術によるクロスインダストリー、クロスドメインも重要 ex. 1T (A1) × ○○

改革すべき5つの社会システム

7つの社会像の実現を支えるイノベーションエコシステム構築相互に関連する「5つの社会システム」が必要

人材育成

2050年までの長期スパンで 考える人材育成

イノベーションが安心や 便益を与える実感

社会の受容

オープンイノベーションの深化

知の活用

政府が主導する改革と政策

制度やしくみ

ポートフォリオと重点化 投資

人材育成

2050年までの長期スパンで考える人材育成

人材育成の改革なしには2030年、2050年に知の集 積の場どころか、Japan Passingが起きることを憂慮

科学技術力を担うプレイヤー、強い個人、 国際性を持った強い個人を育成

第6期計画で初等・中等・高等教育、研究活 動の改革のスタート。10 30年後の未来へ

産業界と教育機関が連携して人材を育成

高等教育の改革は既に実行の段階 産学官連携コンソーシアム等でフォロー

初等中等教育まで 包含した取組が重要 教育システムへの民間活力導入

考える力 (課題設定·解決能力)

これからの人材育成に求める方向性

制度やしくみ

政府が主導する改革と政策

イノベーション創出における政府の役割

- 規制改革やサンドボックス 民間投資誘発の支援制度
- 社会インフラや法制度の整備

再生医療やゲノム編集

データ利活用における法整備

電力料金の低減

公共による調達

公的な調達による早期の 社会実装実現 事業立ち上げ初期の運営 インフラ・防災等の社会課題事業

国が意図的、積極的に製品や サービスを活用

ルール化・標準化を産業化に

世界に先駆ける課題解決先進国 その経験をルール作りに結びつけ 産業競争力を向上

投資

ポートフォリオと重点化

公的な研究開発投資

- GDP比 1% の公的投資達成 (第5期でも明記されている)
- **科学技術イノベーション転換施策の推進**
- ムーンショット 産業への広い波及効果、世界の才能を集めて

ベンチャー・中小企業等のインキュベーション

国の研究開発予算の大部分は大学や公的研究機関へ投資ベンチャーや中小企業へも投資を

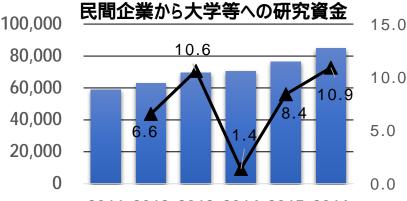
| 政府の投資を梃子とした大企業とベンチャーの連携による|
タートアップ オープンイノベーション

大企業のリソース(人材、技術、資金)とベンチャー・中小企業のリソースを組み合わせる日本的インキュベーション

知の活用

オープンイノベーションの深化

産業界が大学・公的機関の知を最大限活用


- 個々の企業や大学の産学連携だけでなく、広く産業、アカデミアを巻き込み、 広範な連携で大きな成果を
 - ex. SIPでのオールジャパンによる自動車エンジン熱効率向上 AICE

出口指向と基礎・基盤研究

産業界による大学等への投資は増加

- どちらもイノベーション推進の両輪
- 産業界は基礎基盤的な研究の重要性を 十分認識している
- 大学からも産学連携への期待は大
- ü 応用研究は出口につながる民間からの研究 資金を活用
- ü 基礎研究への投資は運営費交付金から

2011 2012 2013 2014 2015 2016 | 民間企業からの研究資金(M¥) --- 対前年度増減率(%)

文部科学省「H28年度大学等における産学連携等実施状況について」より作成

社会の受容


イノベーションが安心や便益を与える実感

市民の視点と科学的な議論

- 科学技術やイノベーションの産業や社会への影響は、誰がどのように使うかに依存
- ステークホルダーの理解には、産学官公+市民の視点や意識、「イノベーションが安心や便益を与える」という実感が必要

専門家と非専門家、人文社会科学の専門家も交えた対話、職業としての「サイエンス・コミュニケーター」「インタプリター」の養成と活用も

社会的受容が特に必要な分野

安心・安全とリスク

ISO:

安全とは「受容できないリスクがないこと」
「受容」は人・文化により変化
リスク(期待値)=ハザード(被害)×確率
安全に対する科学的な判断ができる文化、
素養の育成・・・中初等教育から

政府における政策の推進

総合科学技術・イノベーション会議 (CSTI)

科学技術のみでない「イノベーション創出の司令塔」

「基礎から実装」 一気通貫型プログラムを継続・強化

政府プログラムへの産業界の投資

- ・産業界が中長期的に必要と思うテーマ、 強い関心を示すテーマの設計が重要
- ・産業界の意見反映と参加・活用のし易さ の工夫を 27

COCN

社会課題解決型イノベーションエコシステムの構築

(課題解決ジャパンモデル)

第6期計画の方向性

- ・地経学的な環境変化に対応
- ・成長戦略と一体化し産業界との対話を重視
- ・イノベーションエコシステムの構築を核とする
- ・イノベーション創出の社会の価値観を転換
- ·Society5.0の実現とSDGsの達成

人材育成

初等教育から高等教育まで 2050年までの長期スパン で考える

制度やしくみ

支援制度の導入と活用促進社会インフラや法制度の整備

投資

政府の研究開発投資 ベンチャーのインキュベーションなど_ 我が国の根源的な社会課題

少子高齢化社会への対応 / 社会のサステナビリティ

データ駆動型社会の構築に必要な環境基盤

データシステム連携の基盤

データクリエーションと要素技術の基盤

国に求める政策 ・CSTIを科学技術のみならずイノベーション創出

- ·CSTIを科字技術のみならすイノベーション創出 の司令塔に
- ・基礎から実装への一気通貫型プログラムの強化 ・政府プログラムへの産業界の投資は、関心分野 と参加しやすいし〈みが必要

社会の受容

産学官公に加え市民視点からの安心や便益の実感

知の活用

出口指向と基礎基盤研究はイノベーションの両輪

まとめ

- 真の課題解決先進国として「課題解決ジャパンモデル」を指向し、 世界に広〈発信するとともに、第5期からSociety5.0の実現を引き継ぎ、強固なイノベーションエコシステムの構築と人々や社会の 価値観の転換に取り組むことを提言
 - 実現したい7つの社会像
 - 7つの社会像実現に必要な三層の基盤
 - イノベーションエコシステム構築のため改革すべき5つの社会システム
- COCNは、今後も科学技術・イノベーション政策にフォーカスしつ つ、会員の手弁当精神による推進テーマ活動を通して、第5期科 学技術基本計画の完遂、第6期計画の策定と推進、 Society5.0の実現、SDGsの達成に貢献していく。