- . ムーンショット研究が目指すべき方向
- -2. 自然界に存在する生物機能を究極活用し、水·肥料等の資源 制約を克服

ミッション目標例

2050年までに生物多様性を増大させる農業を地球規模で実現

- -2-1. スーパー農作物等の開発 (サイバー育種)
- -2-2. 土壌微生物環境の完全制御 (化学肥料ゼロ)
- -2-3. 昆虫等の完全制御 (農薬ゼロ)

-2. 自然界に存在する生物機能を究極活用し、水・肥料等の資源制約を克服

- Ø 育種のサイバー化によって、野生種の「強靭さ」を短期間に栽培種に取り込み、農作物やバイオマス植物の環境適応力を格段に高める。

【現状·課題】

野生種が持つ環境適応遺伝子(耐乾性等)を栽培種に取り込む必要性。 育種・微生物機能・作物と微生物の相互作用機構を最大活用することによる、メタン・窒素・リン制御と肥料等の資源制約克服と温室効果ガス削減の必要性。

農薬に依存した病害虫・雑草防除から脱却し、持続的な農業生産と生物 多様性の保全・増大を両立する必要 性。

【挑戦すべき研究開発の方向】

未来の環境に適応した作物をサイ バー空間でデザインできる育種システムの構築。

共生微生物や土壌微生物を完全制御。

農薬ゼロを可能にする新たな病害虫・ 害獣・雑草防除技術の開発。

【2050年の目指すべきイメージ】

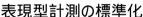
環境適応力の高いスーパー農作物

- ・1万年かかって作出された農作物を10年単位で創出
- ・無肥料・無農薬・劣悪環境下で育つ革新的品種を育成

土壌微生物環境を完全制御し、化学肥料ゼロ

- ・メタン・窒素・リンの微生物による完全制御で無駄ゼロの効率的な**食料生産** と温室効果ガス削減を両立
- ・頑健作物の創出による**生産性の飛躍的向上、劣悪環境でのバイオマス生** 産

自然界の生物機能を最大活用し、農薬ゼロ


- ・生物多様性保全と病害虫・害獣・雑草防除を両立
- ・防除の労力・コストを大幅削減

-2-1. スーパー農作物等の開発(サイバー育種)

Ø 農林水産物の遺伝子機能を全解明し、サイバー空間で農作物等をデザインするサイバー育 種システムを構築する。未利用遺伝資源を最大活用し、環境条件に応じ、必要な環境適応 遺伝子を自在に付与した、スーパー農作物を迅速に創出する。

フェノーム拠点整備

農作物の形質・遺伝子情報等 ビッグデータの蓄積

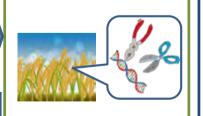
データ

サイバー育種

標準化されたビッグ データの供給

育種ビッグデータ

AIによる作物の デザイン


モデルの検証と実証

スーパー農作物のデザイン 育種・栽培のシミュレーション

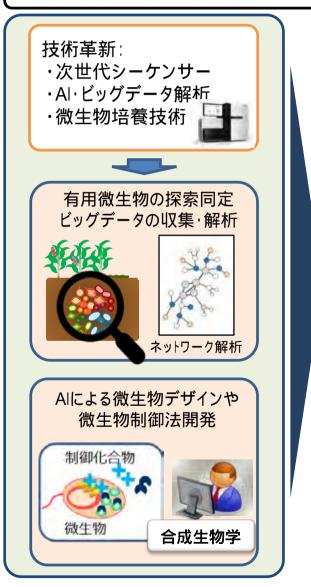
農作物の 迅速創出技術

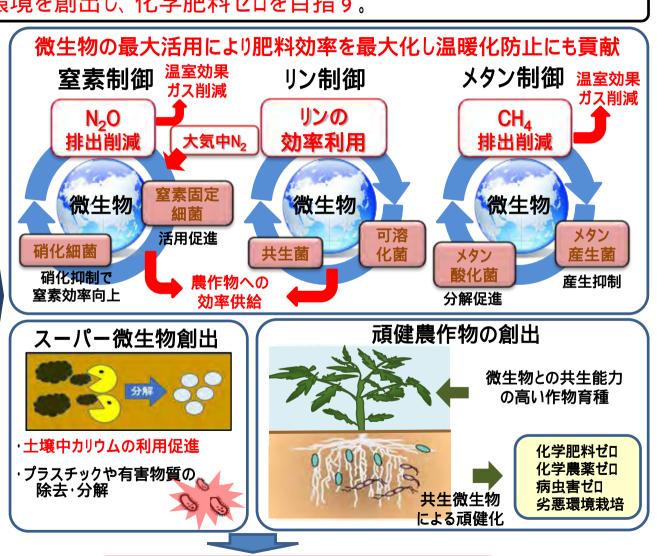
ゲノム編集による 有用遺伝子への 多彩な変異導入

スーパー農作物・植物の創出

砂漠、海水域など不毛もしくは未利用な領 域で栽培が可能な高CO。固定作物開発

機能性成分産生や土壌有害成分等の 吸収能力をもつ作物開発


有害物質の 吸収·除去


未利用遺伝資源の 最大活用

野牛種から1万年 かかった育種を 10年で達成する

-2-2. 土壌微生物環境の完全制御(化学肥料ゼロ)

Ø 土壌中の微生物環境を完全解明。共生微生物や土壌中の有用微生物の最大活用により、 農作物生産に最適な土壌環境を創出し、化学肥料ゼロを目指す。

化学肥料ゼロの農業を実現

-2-3. 昆虫等の完全制御(農薬ゼロ)

Ø 我が国の「強み」であるロボット技術やバイオテクノロジー等を駆使することにより、新たな病害 虫制御技術等を確立して農薬ゼロの農業を目指し、生物多様性保全との両立を図る。

Al、ロボット等をフル活用した防除法

超音波等で害虫を忌避・侵入阻止するロボット

害虫や害獣を個別に認識し 撃退するロボット

入を阻止

圃場で**雑草から害虫まで 防除**するロボット

水田用の 合鴨型ロボット

畑地用の 鳩型ロボット

どんな害虫も見つけて 捕食するロボット

24時間働く 待ち伏せ クモロボット

生物機能をフル活用した防除法

共生細菌による遺伝性操作で 害虫を根絶

昆虫の体内に共生 する微生物を利用

雌だけになり絶滅

様々な環境や害虫に使

えるスーパー天敵育種

遺伝的な不妊化法で 不妊虫を大量生産・放飼

ウリミバエ

ムシを放してムシを殺す

暑さに強い天敵

- . ムーンショット研究が目指すべき方向
- -3. 食料のムダを無くし、環境・健康に配慮した合理的な食料消費を促すソリューション開発

ミッション目標例

2050年までにフード・ロスをなくし、全ての人々に必要な食料を効率的に届ける

- -3-1. 健康・嗜好に応じたパーソナライズド食品 (リユース)
- -3-2. 物流、品質、個人情報駆動によるAIサプライチェーンの確立(リデュース)
- -3-3. 食品廃棄物等の残渣ゼロに向けた新たなソリューション (リサイクル)

-3. 食料のムダを無くし、環境・健康に配慮した合理的な食料消費を促すソリューション開発

Ø パーソナライズド食品製造技術の確立やAIを活用した需給調整システム等により、食品ロスが生じないソリューションを開発する。

パーソナライズド食品、家庭での半自給

自足、食料の完全循環型社会を実現

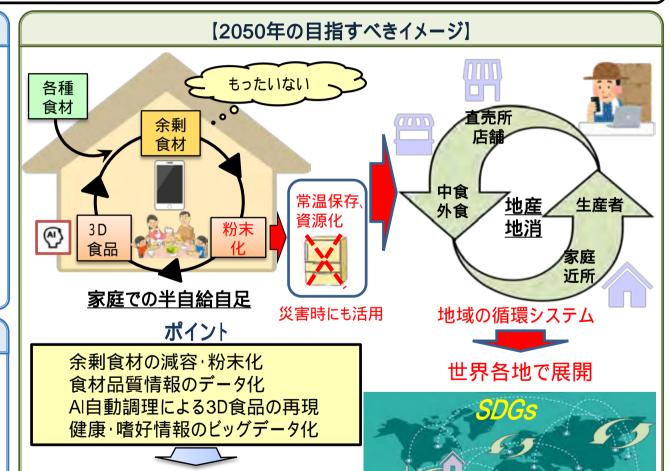
Ø これにより、地産地消·半自給自足の消費行動をグローバルに推進する。

【現状·課題】

生産・流通段階における廃棄農産物・ 食品の多くは、鮮度の劣化等による需 給ミスマッチに起因。

需給をリアルタイムにマッチングさせる仕組み(商流)と、迅速に配達できる物流システムが必要

食品ロスの半分は、家庭から発生。


余剰食品の長期保存や家庭での再加工が可能となる新たなソリューションが必要。

【挑戦すべき研究開発の方向】

各家庭で、健康・嗜好に応じたパーソ ナライズド食品を加工できる技術。 (リユース)

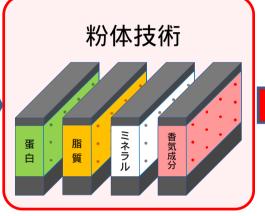
Al需給予測に基づ〈バックキャスト型サプライチェーンの確立。(リデュース)

食品廃棄物等の革新的なリサイクル 技術。(リサイクル)

フードロスゼロ、持続可能社会の実現

25

-3-1. 健康・嗜好に応じたパーソナライズド食品(リユース)


各家庭から発生した余剰食品等を、個々人の健康状態や嗜好に応じ、好みの食品に自在に再加工でき る技術を確立し、健康・環境に配慮した合理的な消費行動を促進する。

粉体:分別化

AI-3D調理アプリによる個人の健康状態ごとの オンデマンド型個食の提供

植物性 ステーキ

牛果実

植物性鰻重

ポイント

乾燥・粉砕技術等による食材の 減容·粉末化

先端技術による健康・嗜好・食 材の高度計測及びAIビッグデー 夕解析

粉末による3D再現:調理加丁技 術の開発

個々人の健康・嗜好に応じ、 余剰食材等を自在に再加工

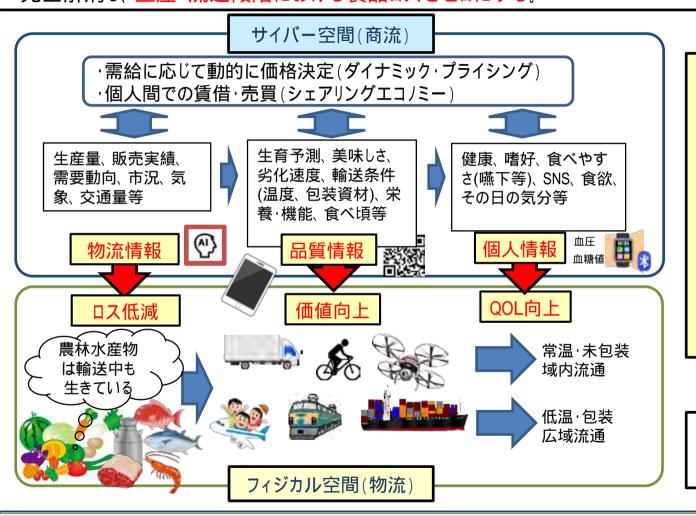
先端技術によるおいしさ解析

視覚 嗅賞 脳科学的アプローチ

嗜好おいしさ情報

健康情報

レシピ情報


高齢者食、おふくろの

VR 情報

味再現 各種災害食への対応

-3-2. 物流、品質、個人情報駆動によるAIサプライチェーンの確立(リデュース)

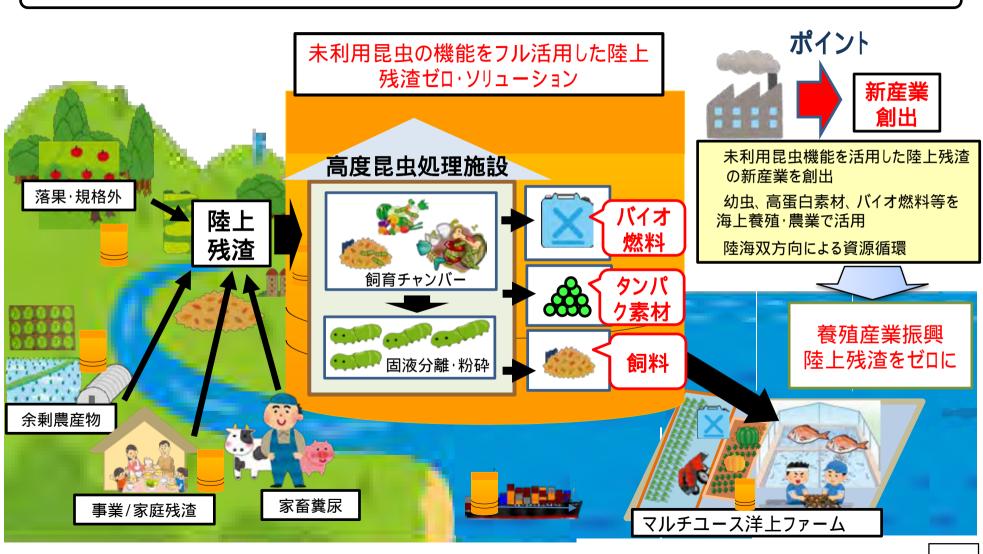
Ø サイバー空間(商流)・フィジカル空間(物流)のリアルタイム融合及び最適化により、需給のミスマッチを 完全解消し、生産・流通段階における食品ロスをゼロにする。

ポイント

サイバー空間での需給の瞬時マッチング物流情報により最適な交通手段・ルートを決定し、食品ロスを削減

品質情報により最適な輸送条件(温度、包装)を決定し、 収穫し立ての鮮度を提供 個人情報により健康・嗜好 や年齢に応じた最適な食材 を提供し、QOLを向上

病者用災害食へも対応


サイバー空間情報を駆使して 食品ロスゼロ、価値向上及び QOL向上を実現

【ImPACT成果等の異分野技術の活用】

Ø 膨大な商流・物流情報からマッチングの最適化を図るビッグデータ処理システムの開発(ImPACT 原田博PM)

-3-3. 食品廃棄物等の残渣ゼロに向けた新たなソリューション(リサイクル)

Ø 昆虫等が有する高いタンパク質合成能力を活用し、食品残渣等をバイオ燃料や水産養殖用資源等に 転換して新産業を創出するとともに、広大な海洋空間を利用した養殖漁業を振興する。

まとめ ムーンショット研究が目指すべき方向

食料供給量の拡大と地球環境保全を両立させる 食料生産システムの創造

1. 強靭な農林水産システム

生産性の飛躍的向上

農林水産業完全自動化

スーパー作物創出

自然災害による被害の最小化

3. フード・ロス防止

パーソナライズド食品

廃棄物の完全リサイクル

地球温暖化防止

肥料・農薬ゼロの究極持続農法

現状の問題

世界人口の 増加 食料需要量 の増大 フード・ ロス

地球温暖化

生物多様性の減少

自然災害の増大

参考資料

- Ø 1950年代に進められた「緑の革命」により、農業生産量は3倍以上に増加したが、同時に地球環境への影響も発生。今後、農業就業人口が減少し、食料供給の不安定化も懸念。
- Ø 今後、食料供給量の拡大と地球環境保全を両立する食料・農林水産業のイノベーションを起こすことが不可欠。

[1950年代~]

高収量品種の導入 緑 化学肥料の大量投入 の 革 農薬等による病害虫 命 防除 灌漑設備の整備、 農作業の機械化等

プラス面

- Ø <u>農業生産量は</u>1960年から2015 年にかけて<u>3倍以上に増加</u>
- Ø 栄養不足人口の減少

マイナス面

- <u> 過度な施肥</u>による土壌や地下 水の劣化
- Ø 農薬による生物多様性への影響
- ∅ 温室効果ガスの増加
- Ø 灌漑農業の普及による<u>地下水</u> 枯渇の進行 等

新たな懸念

[これから]


31

世界の農林水産(Summer 2017, JAICAF)等より作成

食料消費の実態(栄養不足・肥満)

- 世界の栄養不足人口は減少傾向で推移していたが、2015年以降増加に転じ、2018年では 8億2千万人を超えている。
- Ø 一方で、成人の肥満は世界的に悪化しており、2016年は世界の成人のおよそ8人に1人が 肥満(13%、6億7千万人に相当)となっている。
- 世界の栄養不足人口 2018年の栄養不足人口は 8億2千万人を超えると推計

2019 THE STATE OF FOOD SECURITY AND NUTRITION IN THE WORLD(FAO)より作成

32

- 13. 森林による食料供給や地球環境保全に対する貢献

参考

- Ø 森林は、河川流量の安定、水源の涵養などを通じて、農業用水の安定供給に資するとともに、 雨水が森林土壌に浸透し、水質を浄化することで、漁場の保全にも寄与。
- Ø さらに、光合成により大気中の二酸化炭素を吸収することで、地球温暖化を緩和する効果もあり、森林の適切な管理により、食料供給や地球環境保全に貢献。

森林の適切な管理により

食料供給量拡大

地球環境保全

に貢献