【参考3】 平成24年度科学技術重要 施策ア例第第プラン(5)

※ナノテクノロジー・材料の研究開発が貢献している施策を抽出

グリーンイノベ―ション③	
低炭素社会を実現する超軽量・高強度革新的融合材料プロジェクト	経済産業省
サステナブルハイパーコンポジット技術の開発	経済産業省
希少金属代替材料開発プロジェクト	経済産業省
次世代自動車向け高効率モーター用磁性材料技術開発	経済産業省
低燃費・低環境負荷に係る高効率航空機の技術開発	文部科学省
次世代印刷エレクトロニクス材料・プロセス基盤技術開発	経済産業省
グリーン・サステイナブルケミカルプロセス基盤技術開発	経済産業省
資源対応力強化のための革新的製銑プロセス技術開発	経済産業省
環境調和型製鉄プロセス技術開発	経済産業省
革新的省エネセラミックス製造技術開発	経済産業省
革新的セメント製造プロセス基盤技術開発	経済産業省
革新的ガラス溶融プロセス技術開発事業	経済産業省
高温超電導ケーブル実証プロジェクト	経済産業省
送電ロスをゼロにする超伝導直流送電技術等の研究開発	文部科学省

【参考3】 平成24年度科学技術重要 施策ア例第第プラン⑥

※ナノテクノロジー・材料の研究開発が貢献している施策を抽出

ライフイノベーション	
がん超早期診断・治療機器総合研究開発プロジェクト	経済産業省
次世代がん研究戦略推進プロジェクト	文部科学省
重粒子線を用いたがん治療研究(放射線医学総合研究所)	文部科学省
Open-PETの開発(放射線医学総合研究所)	文部科学省
難病・がん等の疾患分野の医療の実用化研究事業(がん関係研究分野)	厚生労働省
後天的ゲノム修飾のメカニズムを活用した創薬基盤技術開発	経済産業省
創薬等ライフサイエンス研究支援基盤事業	文部科学省
再生医療実用化研究事業	厚生労働省
難病・がん等の疾患分野の医療の実用化研究事業 (再生医療関係研究分野)	厚生労働省
次世代機能代替技術研究開発事業	経済産業省
幹細胞実用化プロジェクト((1)iPS細胞を用いた創薬の実現 (2)幹細胞を用いた再生医療の実現)	経済産業省