Making Agriculture, Forestry and Fisheries into a Growth Field Using Big Data, IoT and AI

The goal of this program is to establish a uniquely Japanese system of production, creating a smart, eco-friendly, ultra-laborsaving and highly productive agriculture model. The success of this program will result in intellectual property and standardization that may be adopted throughout the world. Moreover, this program will establish a globally competitive Japanese brand of agricultural, forestry and fishery products that are healthy and delicious, securing Japan’s status for these products in overseas markets. Another goal of this program is to derive new materials from unused resources, advancing a value-adding strategy to create new regional industries. To achieve these objectives, this program is pursuing an all-Japan approach, transcending the boundaries of ministries, industries, and fields of specialization. Ultimately, this program intends to turn the agriculture, forestry and fishery industries into a growth sector.

Program Director
Noboru Noguchi
Hokkaido University Graduate School of Agriculture
Professor, Research Faculty of Agriculture

Research and Development Topics

1. Incorporate robotics, ICT, genome and other leading-edge technologies to produce a uniquely Japanese smart, ultra-laborsaving, and highly productive agriculture models

- Incorporate robotics, ICT, AI, genome-editing and other leading-edge technologies to produce an environmentally sound, ultra-laborsaving and highly productive agriculture

2. Enhancing the value of agricultural, forestry, and fishery products by developing new materials and offering distinct, functional foods for health, etc. by making use of techniques of medicine and engineering

- Differentiate Japanese foods by finding health functionality
- Create regional industry by new materials from unused resources

Implementation Structure

Establish a strategy-setting working group (WG) under the Program Director (PD) and determine exit strategies. Arrange for Sub-PDs to take the lead on progress management, etc., for individual issues. Promote information sharing and coordination among researchers working on different issues through a coordinating council.

Cabinet Office PD (Noboru Noguchi)
Incorporate robotics, ICT, genome and other leading-edge technologies to produce a uniquely Japanese smart, ultra-laborsaving, and highly productive agriculture models

In Japanese agriculture, farmland liquidity has occurred mainly due to the retirement of aged farmers, while farmland consolidation to core farmers of regional agriculture has progressed dramatically. These farmers are required to manage fields dispersed over extensive areas with the expansion of the management scale, and it has been pointed out that future production management will be extremely difficult with the conventional agricultural production system.

Therefore, a robot work system (tractors, rice-planting machines, combine harvesters, fertilizing machines) for rice cultivation was constructed to establish a robot-based ultra-labor-saving production technology system; peripheral technologies (e.g., quasi-zenith satellite receiver, multi-field farm management system) were concurrently developed. A system that can remotely or automatically control water supply/drainage of fields was also developed to reduce the time for water management, which accounts for majority of the working hours for rice cultivation. In addition, a data platform that enables data linkage, sharing, and provision (Agricultural Data Collaboration Platform: WAGRI) was constructed to provide an environment where farmers can practice agriculture based on weather, farmland, soil, cultivation, and other data. In protected horticulture, a tomato cultivation management system based on plant in-vivo information was developed, and the target yield was achieved in a demonstration test. A number of new plant protection technologies/systems were also developed.

With regard to genome-editing technology which has attracted worldwide attention, domestic genome-editing technology was developed, and breeding stocks with epoch-making characteristics were created by making use of genome-editing technology.

Enhancing the value of agricultural, forestry, and fishery products by developing new materials

Value-adding strategies, such as food production by taking advantage of the tastes, functions, and other advantages of domestic farm products and new materials from unused resources, were promoted.

The development of food items, meals, and exercise recipes for the maintenance and improvement of brain, physical locomotion, and other health functions was promoted, and a device for evaluating homeostasis and other factors was developed.

In addition, a modified lignin, which plays a key role in domestic forest biomass, was successfully developed.

Efforts were made to develop highly functional industrial products using the modified lignin, which is resistant to heat, easy to process, and environment-friendly, and to commercialize the resulting products using forest scraps.

* Development of health functional foods

* Production of modified lignin and Automotive parts made of it