研究開発基盤

科学技術 データベース

研究所・大学を高速 ネットワークで結び 遠隔地で共同研究が 行えるスーパーコン ピュータネットワーク

分子・原子の運動や 構造、気象、環境な ど生物学的、理工学 的課題のシミュレー ション等を行う計 算科学

実現

5年間の研究開発目標

科学技術情報の雷子 化と検索システム

国の研究機関及び大 学で統合し共通化し たスーパーコンピュー タネットワークの開 発・整備

高度な交通情報システ ム (ITS等)

- ·安全運転支援(危険警 告、 運転補助)
- ・次世代インターネット を 用いた高度なITS

宇宙開発(通信)

・ギガビット級の高速イ ン ターネット通信等

バイオインフォマティク

- ・小中規模蛋白質の立体 構 造予測、
- ・高精度遺伝子発見技術

人材育成・確保

ソフトウェア、インターネット、融合領域 などの人材育成・確保

他分野との 融合領域

高度な交通情報 システム (ITS等)

宇宙開発(通信)

環境

ナノ技術

パイオインフォマティクス

防災

ロポティクス

など他分野との連携の下 で行う高度な情報通信技 術の研究開発

実用化

量子丁学やナノ技 術等の新しい原理 技術を用いた情報 通信技術

機械が人間に合わ せてコミュニケー ションできる 次世代ヒューマン インターフェース

次世代情報通信技術 (10年後以降の実現に 向けた基礎的技術)

日本の優位

な技術の強化による国際競

争力向上

安心

安全で快適

な生活

高速・高信頼情報通信システム (社会・経済への迅速な還元が可能な領域)

ネットワークがすみずみまで行き渡った社会への対応と 世界市場の創造に向け、国際競争力強化を図り安心・ 安全で快適な生活を実現。このため、日本が優位な 技術(モバイル、光、デバイス技術等)を核に、産学官の 強力な連携の下で世界に先行して、ハード技術とコンテ ンツを含むソフト技術を一体として推進。

超高速モバイルインターネットシステム技術

家庭、オフィス、移動時など、いつでもどこでも大 量の情報を無線及び光ネットワークを介して高品質 に交換・活用でき、高度インターネットを支える超 高速モバイルインターネットシステムを実現する 技術

高機能・低消費電力デバイス技術

高性能な携帯情報端末、高速のネットワーク等を実 現する高機能・低消費電力デバイス技術(半導体プ ロセス技術、システムLSI技術、平面ディスプレイ 技術等を含む)

利便性、安全性・信頼性向上技術等

必要な情報の迅速な検索等の利便性技術

人命、財産、プライバシー等に関する重要な情報 を取扱う経済・社会活動のインフラとして十分な システム全体の安全性・信頼性技術

ソフトウェアの信頼性・生産性を向上させる技術

動画などの情報内容(コンテンツ)の制作・流通を支援す る技術

分散して存在するコンピューティングパワー、ソ フトウェア、コンテンツなど、場所、時間等の条 件によって変化する資源を、ネットワークを通じ て柔軟かつ安全に活用できる技術

推准方策

- 1.実用化を強く意識した研究開発の促進と研究推進体制の整備
- 2.標準化の推進、テストペッドによる利用技術開発等の促進
- 3. 研究者の流動化促進とベンチャー育成
- 4.大学や研究機関における研究拠点化と研究者の重点的な配置、 情報通信分野の高水準の教員及び人材育成規模等の大幅な増大
- 5.「情報通信の社会への影響」「インターネット型社会像」の研究
- 6 . IT戦略本部との連携、国際標準化や技術移転などのための戦略的な国際連携の強 化

5年間の研究開発目標

5年後(実用レベル)

10年後以降の実 現を目指した基 礎技術

数十メガビット/秒級の 無線アクセス

10テラビット/秒の全光

IPv6による超大規模 な接続(ノート)と高 品質リアルタイム伝 送の実現

1 ギガヘルツ級の高速・ 高機能で1週間充電 不要なモバイル端末 の実現等

10万人規模の同時アク セスが可能なデータベース

暗号・認証技術の高 度化

年間で分単位以下の 障害時間と自動回復

ソフトウェアの信頼 性・生産性向上を実 現する開発手法の確 立

デジタル権利管理シ ステムの実現等

比較的短距離で の量子暗号鍵配 布等

状況を判断して 利用者の意図理 解ができるレベ ルの実現等

実用 化

実用

化

実用

化

(大型サーバ)