3月1日時点暫定版

資料 3-1

量子未来産業創生戦略(案)

令和5年3月1日 量子技術の実用化推進ワーキンググループ

目次

1. はじめに	3
2. 本報告書の位置づけ	4
3. 目指すべき未来の産業の方向性	5
4. 実用化・産業化の取組を進める上での3つの視点	8
5. 産業上の主な課題や基本的対応方針	10
5. 取組の方向性	14
(1)量子コンピュータ(ソフトウェア、利用環境整備等)	14
(2)量子コンピュータ(ハード、基盤技術等)	18
(3)量子セキュリティ・ネットワーク	21
(4)量子センシング/量子マテリアル	24
(5)イノベーション基盤	27
6. さいごに	32

1. はじめに

- ✓ 「量子未来社会ビジョン」(令和4年4月22日 統合イノベーション戦略推進会議)においては、量子技術の利活用により持続可能な社会・経済・環境を目指していくビジョンを示し、3つの目標(2030年に、国内の量子技術の利用者を1,000万人に、量子技術による生産額を50兆円規模に、未来市場を切り拓く量子ユニコーンベンチャー企業を創出)を掲げている。
- ✓ 本目標の実現のためには、量子技術の実用化・産業化に取り組み、量子技術 を生産性向上、新産業創造、社会課題解決等の価値の創出につなげていくこ とが重要である。
- ✓ 特に、目標に掲げる利用者、生産額の実現を図っていくためには、材料、金融、健康・医療、エネルギー等の多様な分野の産業が、自社の事業・サービスに量子技術を活用し、裾野の広い市場を形成していくことが重要となる。
- ✓ 多様な分野の産業における量子技術の活用を促進していくためには、各産業にとって価値のあるユースケースの創出に向けて取り組むことが重要である。例えば、産業分野(例、素材開発、製造、物流・交通等)や喫緊の社会課題(例、環境、食糧、水、エネルギー、防衛分野等)におけるユースケースが挙げられる。また、ユースケースの成果や価値について積極的に情報発信していくとともに、経営者等がその価値を理解して事業活動に量子技術を活用できる環境づくりも重要である。さらには、多様な分野の産業が量子コンピュータ等を利活用できる環境づくりも重要となる。
- ✓ 量子技術の利活用によって創出される価値市場は、将来、巨大な市場規模が 見込まれることから、海外では官民の投資が活発化し、民間企業が積極的か つ迅速にグローバル展開するなど国際競争が激化している。さらには、高度 な技術力を必要とする産業であることから、民間企業が大学・研究機関等と 密接に連携してビジネスを展開するケースが多く、さらに基礎研究と産業応 用が近接しつつある領域と言える。
- ✓ このため、実用化・産業化に当たっては、産学官が一体となり、基礎研究と同時並行で、早期の段階から将来のビジネス展開も戦略的に検討しながら、これまで以上に取組を加速していくことが重要である。
- ✓ 量子技術によって新しい事業・サービスが生まれる新興市場では、これまでにない事業・サービスを開拓するスタートアップ/ベンチャー企業も重要なプレイヤーとなり得る。一方で、量子技術の多くは実用化・産業化までに長期的な投資を必要とすることから、長期の投資を必要とする量子分野の市場の特徴を踏まえながら、長期的な視点でスタートアップ等への投資や人材を惹きつけて、ベンチャーエコシステム形成していくことが重要である。
- ✓ これらを踏まえ、量子未来社会ビジョンで掲げられた目標を実現していくため、産学官の連携の下、量子技術の実用化・産業化に向けて、重点的・優先的に取り組むべき具体的な取組の方向性を示す。

2. 本報告書の位置づけ

量子技術の研究開発や周辺領域を主とする「量子技術イノベーション戦略」 (令和2年1月21日統合イノベーション戦略推進会議)(いわば"量子技術の研究開発戦略")に対して、量子未来社会ビジョンは、我が国の産業の成長機会の創出や社会課題の解決のために量子技術を活用し、社会全体のトランスフォーメーションを実現していくため、量子技術により目指すべき未来社会ビジョンやその実現に向けた戦略、いわば"量子技術による社会変革に向けた戦略"として策定された。

本報告書は、量子未来社会ビジョンで掲げられた目標を実現していくため、産学官の連携の下、量子技術の実用化・産業化を通して実現される量子技術を活用した経済社会の様々なセクターの変革に向けて、当面の間、重点的・優先的に取り組むべき具体的な取組、いわば"量子技術の実用化・産業化に向けた実行計画"として策定するものである。

3. 目指すべき未来の産業の方向性

- (1) 多様な産業(ソフト・ハード) の参画・共創
 - (i) 多様なユーザの参画によるサービスの創出・展開
 - ✓ 将来の量子産業¹のマーケット/バリューチェーンの大半は、サービス部門となることが見込まれる。このため、将来、様々な分野のサービスを提供する産業が量子技術分野に参画し、産学官の多様な者の共創の下で、各分野で量子技術を活用してサービスを創出・展開していくことが期待される。この結果として、サービスからハードに資金循環するモデルを形成していくことが期待される。
 - ✓ なお、ユーザ産業にとって、量子技術は、事業活動を進める上でのツールの一つに過ぎない。この視点では、経営者等が、他の技術と比較して量子技術を導入するメリットを十分に理解し、それぞれの事業活動に量子技術を生かして、生産性向上や新産業創出を実現できるようにする環境づくりが期待される。
 - ✓ さらに、このような量子技術を事業活動等に有効に活用している企業に対して、投資家が積極的に評価して投資していく仕組みづくりも重要である。

(ii) 裾野広い産業の参画・共創によるハードウェア・システム製造

- ✓ 量子コンピュータ等のハードウェア・システムを製造する際には、材料、 半導体、デバイス、冷凍機、アーキテクチャ、製造プロセス装置まで、中 小企業を含めて裾野広い産業が参画・共創していくことが期待される。さ らには、早期の段階からユーザとの共創もしながら、ユーザニーズをハー ドウェア・システムにフィードバックしていくことも重要である。
- ✓ また、材料・デバイス分野など我が国の産業が強みを生かせる分野やチョークポイント分野でグローバルマーケットを戦略的に獲得していくことも期待される。さらに、有志国の企業とのグローバルな連携をしつつ、強靭かつ安定的なサプライチェーンを構築していくことも期待される。
- ✓ 将来、ハードウェア・システム関連のビジネスについては、ソフト・サービスと組み合わせたビジネス(クラウドによる計算リソース提供サービス、ソリューションサービス等)から、ハード売り(オンプレなど量子コンピュータ提供、部品・コンポーネント製造、ファウンダリー、回路設計サービス、製造プロセス装置等)まで、様々なビジネスモデルの選択肢が

¹ 本報告書では、量子コンピュータ等のソフトウェア・ハードウェア関連の製品・サービスを提供する産業、ユーザとして量子技術を利活用する産業、利活用をサポートする産業等の量子技術の利活用によって価値を創出する裾野広い産業を指す。

ある。

✓ 現時点では、黎明期の市場であるため技術方式やビジネスは定まっていないが、将来の進展状況を見据えながら、勝ち筋を最大限にすべく、いつでもピボットできるように柔軟(レジリエンス)かつ迅速(アジャイル)に戦略的に対応しておくことが重要である。さらに、各社が協力して、各技術方式に共通の部品・材料等を設定して製造する、汎用品と互換性のある部品・材料を採用するなど戦略的に取り組むことも期待される。

(2)全ての産業が量子技術にアクセスし、利活用できる環境

- ✓ 現時点では、ユーザが量子技術を利用する場合には、専門的知識が必要となる、コンピュータ毎に開発環境が異なるなど、ハードルが高い状況とも言える。このようなユーザ利用を支援するサービス(アプリケーションサービス、プログラミング環境提供サービス、教育サービス、コンサルティング等)も期待される。
- ✓ 将来は、誰もが意識することなく、量子技術を利用できるようにしていく ことが重要である。このためにも、従来のユーザインターフェイスをなる べく維持しながら、ある計算課題に対してバックグラウンドで自動的に 古典と量子に振り分けて計算するなどユーザビリティのあるサービスの 構築が期待される。
- ✓ また、全てを量子にするのではなく、古典と量子の得意な能力を補完していく古典・量子ハイブリッドの視点や、技術の進展状況に応じて、サービスの一部の従来技術を徐々に量子に置き換えるなどマイグレーションをしていく視点も重要である。

(3) スタートアップ/ベンチャー・新事業の創出・成長

- ✓ 新興市場においてはスタートアップ/ベンチャー企業は重要なプレイヤーとなる。その迅速性・柔軟性を生かして、激変する市場に追従して、国内外の市場を獲得していくことが期待される。そして、将来、事業化の利益が次のビジネス開発やスタートアップ等の創出・育成に再投資されるベンチャーエコシステムの形成に向けて取り組んでいくことが期待される。
- ✓ スタートアップ/ベンチャー企業の成功のためには、研究者・技術者のみならず、ディープテックをドライブしてビジネスをデザイン・展開できる起業家・経営者の存在も重要となる。さらには、長期的な視点で資金面のサポートをするディープテックに理解のある投資家も必要である。
- ✓ また、大企業においても、総合力や資本力も生かしながら強みを発揮し、 新事業部門/カーブアウトベンチャーを立ち上げていくこと(イントレ プレナー)が期待される。

(4) グローバル連携・展開

- ✓ 量子技術は世界的にも投資が活発で、今後のグローバルマーケットの飛躍的な成長が見込まれる。技術やビジネスが定まっておらず、いまだに勝者が決まっていない中、我が国産業も今後の戦略次第ではグローバルマーケットを獲得できるチャンスは大いにある。
- ✓ このため、海外企業と積極的に連携しつつ、サービスや技術の面で水平・ 垂直ともにグローバル連携しつつ、グローバルに事業展開していくこと が期待される。さらに、欧米やアジアなどサービス実証するなどして海外 展開し、各サービスの特徴に応じて戦略的に対応することも期待される。
- ✓ さらには、グローバルマーケットを確保する上でも、標準化の獲得に向けて積極的な活動も重要となる。知的財産については、長期的な技術分野でもあることから権利化期間も見据えて、ノウハウも含めて権利化すべきものやしないものを峻別しながら、オープン・クローズ戦略を徹底していくことも期待される。

(5) 産学官連携による産業化推進

- ✓ 量子産業においては、高度な技術を必要とするため、大学・研究所等の基礎研究の成果を生かして産業化するケースが多く、近年、国際競争の加速により基礎研究と産業が近接する動きが加速しつつある。
- ✓ このためにも、量子技術による新産業創出協議会(Q-STAR)や量子技術 イノベーション拠点(QIH)が組織的に連携するなどして、ビジョンや価 値観を共有し、共同研究、人材交流、情報交換等のあらゆる面で産学官が 連携する体制や仕組みを構築していくことが期待される。
- ✓ 国プロジェクトにおいても、このような産学官が連携する体制づくりを 行いながら、研究開発から産業応用までを実現していく取組を支援する 施策の充実・強化を図っていく。

4. 実用化・産業化の取組を進める上での3つの視点

前章の目指すべき産業の方向性や量子未来社会ビジョンの基本的考え方²も踏まえ、量子技術の実用化・産業化の取組を進める際には、以下の3つの視点を基本として取り組む。この際には、国際競争の激化等を踏まえ、これまで以上に加速(Acceleration)しながら取り組む。

■Collaboration 「多様な産業の量子分野への参画・協働・共創、グローバル 連携・展開、産学官連携 |

量子未来社会ビジョンの目標に掲げるように、量子技術の利用者、生産額の拡大を図っていくためには、幅広い産業界による量子分野への参画を得ながら、多様な分野の企業が協働して新たな価値を創造(共創)し、量子技術を様々な分野で活用して市場の裾野を広げていく視点が重要となる。

このためには、材料、金融、健康・医療、エネルギー等の多様な分野のユーザ 企業による参画や、量子技術のプレイヤーとの共創が必須である。また、量子コンピュータ等を実社会へ実装していくためには、量子技術分野のみならず、従来型(古典)のデバイス・部品・材料、エレクトロニクス、情報通信等の企業による参画(量子・古典ハイブリッド)も必須となる。

このような多様な企業の参画を促進するため、訴求力あるユースケース(キラーアプリケーション)づくりに向けた支援とその効果の明確化や、従来型(古典)の技術領域と協働・共創できる仕組みを構築していくことが重要となる。

さらには、有志国の企業と水平・垂直ともにグローバルな連携も図りながら、 安定的かつ強靭なサプライチェーンの構築や、グローバルマーケットを開拓し ていくことも重要である。

また、基礎研究と産業がますます近接する中で、組織・個人レベルで、産学官 連携を一層強固にしていくことも重要となる。

■ Accessibility 「産業界に開かれた量子技術の利用環境の実現」

幅広い産業界による量子分野への参画を促していくためには、多様な分野の 産業ユーザが活用できる量子技術の利用環境 (量子コンピュータ、量子センシン グ、量子セキュリティ・ネットワーク等) を整備していくことが必要である。

また、量子技術は一般の企業にとっては敷居が高く、未来の技術との意識が強いとの指摘もあることから、これらの企業が既存の技術と分け隔てなく容易にアクセスできる機会を増やすなどの利用支援をしていくことも重要である。さらに、様々な分野で量子技術を活用するに当たっては、従来技術との比較を含む

² 「量子技術を社会経済システム全体に取り込み、従来型(古典)技術システムとの融合により (ハイブリッド)」、「我が国の産業の成長機会の創出・社会課題の解決、最先端の量子技術の利活用促進(量子コンピュータ・通信等のテストベッド整備等)」、「量子技術を活用した新産業/スタートアップ企業の創出・活性化」

性能・コスト・利便性等に関する優位性・有効性などの情報についても積極的に 開示・提供していくことが重要である。

■Incubation 「積極的なベンチャー・新事業創出支援/エコシステム形成」

量子技術分野のような新興市場では、これまでにない事業・サービスを開拓するベンチャー企業(既存企業の新事業部門やカーブアウトベンチャー等も含む)も重要なプレイヤーとなり得るが、長期的かつ安定的な投資を喚起して、市場開拓を後押しするなどしてプレイヤーを育て、最終的には市場の利益が次のスタートアップの創出・育成に循環するエコシステムを形成していくことも重要となる。我が国においても、ソフト・ハードともにスタートアップ企業が出現しており、それぞれのステージ・特徴に応じて、各種支援を充実させながら、海外からの投資促進を含むグローバル市場を見据えた、有志国を含むグローバルなエコシステムを形成していくことが重要である。

5. 産業上の主な課題や基本的対応方針

(1) 量子技術の利活用による効果的なユースケースが少ない

(課題)

- ✓ 量子コンピュータ、量子センシング、量子セキュリティ・ネットワーク においては、量子技術の活用による効果的なユースケースが少ないのが 実態である。
- ✓ ユーザ産業にとっては、量子技術が既存技術と比べて、性能・コスト・ 利便性も含めてどの程度便益があるのかに関心があるが、技術が発展途 上でもあるため、既存技術との優位性を明確に示すユースケースは少ないのが実態である。
- ✓ さらに、量子技術の活用による効果や便益(ユーザ産業にとっての経営 視点等でのメリット)について、現状や将来の見通しも含めて、ユーザ 産業が事業化判断に必要となる正確な情報が不足している。

(基本的対応方針)

- ✓ 将来の量子技術の発展も見据えて、市場の裾野を広げるべく様々なユーザ産業の参画を促進し、ユーザにとって訴求力のあるユースケースづくりに向けた支援や情報発信を積極的に行っていく。ユースケースづくりの際には、多様なユーザ産業やベンダー産業、大学・研究機関等が、情報交換・意見交換、人材交流をしながら共創をしていく体制づくりが必要となる。このため、協調・競争領域や各ユースケースの特徴も踏まえながら、産学官が一体となってユースケースづくりをできる体制を構築する。
- ✓ さらに、性能のみならず、コスト、利便性等も含めて、既存技術との優位性なども含めて、量子技術の活用による経営者視点等での効果・性能に関して正確なベンチマークを設定し、広く情報提供を行っていく。この際には、量子コンピュータ等のハード技術が発展途上であることも含めて、現状や将来の見通しも含めて、ユーザにとって事業化判断に必要となるTRL(Technology Readiness Level)、BRL(Business Readiness Level)といった情報も提供していく。
- ✓ また、ユーザにおいては、量子技術はあくまで手段の一つであり、特別 視はしていない。そのため、従来(古典)技術システムに量子技術を取 り込み(古典から量子へのマイグレーションも含む)、量子・古典ハイ ブリッドシステムにおいてユースケースづくりをすすめ、既存技術との ベンチマーク比較を実施して、量子技術の活用による効果を明確にする 視点も重要である。

(2) 量子技術に対する技術的なハードルが高い

(課題)

- ✓ 量子技術は高度な知識・技術を必要とする場合が多く、量子分野以外の 企業からは参入障壁(ハードル)が高いと捉えられる傾向にある。
- ✓ ソフト面については、材料、金融、健康・医療、エネルギー、AI等の多様な分野の企業による参画が期待されるが、多くの企業では、量子技術に利活用できる設備等の環境がなく、量子技術に関する知見・人材も有していない。
- ✓ ハード面についても、従来型(古典)のデバイス・部品・材料、エレクトロニクス、情報通信等のステイクホルダーの参画が必須であるが、どのような領域で参入機会や市場性があるかについて情報が不足している場合が多い。

(基本的対応方針)

- ✓ 幅広い産業界による量子分野への参画を促していくためには、多様な分野の産業ユーザが活用できる量子技術の利用環境(量子コンピュータ、量子センシング、量子セキュリティ・ネットワークなど)を整備する。
- ✓ また、量子分野以外の産業においては、量子技術に関する知見・人材を 有していない場合が多いことから、量子技術分野の研究者・技術者等の 関係者との交流や協働の機会を拡大するなどの情報・技術・人的な参画 支援を行っていくとともに、教育プログラムの提供も積極的に行ってい く。
- ✓ 将来の量子技術の実用化に向けて、必要となる従来型(古典)のデバイス・部品・材料、エレクトロニクス、情報通信等を整理・明確化するなどして、どのような領域で新規参入機会や市場性があるかについて情報提供をしていく。

(3) 将来の技術・市場が不透明で事業リスクが高い

(課題)

- ✓ 将来、量子分野の産業は巨大な市場が見込まれるものの、現時点では技術・産業の勝ち筋が決まっておらず、将来の技術・市場の見通しを立て難く、長期的投資も必要とすることから、現状では他分野の産業と比べて事業リスクが高い領域であると言える。
- ✓ 特に、我が国の産業界では、このような長期的投資を必要とする分野に 対して投資が低調といった傾向がある。
- ✓ さらには、単独企業において不透明性の高い基礎研究や巨額の製造設備への投資をしていくことはリスクが高いとの意見もある。

(基本的対応方針)

- ✓ このような事業リスクを少しでも低減するため、パブリックセクターが、 複数の企業が共有できる試作・試験・評価設備を整備するなど官民のリ ソースを効果的・効率的に活用できる仕組みが重要である。
- ✓ また、共創領域(共通部品等)において複数の企業が共創する体制を構築する、あるいは活動を支援するなど、支援していくことが必要である。
- ✓ 基礎研究段階においても、パブリックセクターが積極的に支援していく ことが重要である。

(4) ベンチャー企業・新事業の創出・成長のための環境が不十分 (課題)

- ✓ 量子産業のような新興市場では、これまでにない事業・サービスを開拓 するスタートアップ/ベンチャー企業(既存企業の新事業部門やカーブ アウトベンチャー等も含む)が重要なプレイヤーとなり得る。
- ✓ 海外においては、ソフト・ハードともに多くのスタートアップ企業が立ち上がり、VC等から巨額の資金調達を行うなど動きが活発化しているが、資本力の乏しいベンチャー企業にとって、長期的な投資や技術開発や市場開拓といった、いわゆる長期戦を必要とする量子技術分野は、民間のみの市場メカニズムではリスクが高い領域と言える。
- ✓ また、国内のベンチャー投資環境においては、ベンチャー企業への投資 総額が少ないことや、金融機関等は投資回収期間が長期の投資を忌避す る傾向にあることに加え、国際市場への事業展開の難しさなど、ベンチャー企業の創出・成長のためのビジネス環境・機会が不十分である。

(基本的対応方針)

- ✓ 量子分野は長期的な投資や技術開発が必要である分野のため、積極的に 国プロジェクトを呼び水として、民間からの投資を促し、産学官が一体 となって、量子技術を活用した市場の形成と並行して長期的な視点での 支援を通じてベンチャーの創出・育成を支援する。
- ✓ インキュベーション拠点や金融機関とのマッチング等を通じたベンチャー企業の創出・支援、ベンチャー企業の担い手となる若手起業人材育成、量子技術を活用したビジネスアイデアを創出する仕組み(ピッチコンテスト、アイデアソン/ハッカソン等)を推進する。
- ✓ さらには、既存企業との連携やベンチャー企業同士の連携やベンチャー エコシステム形成、事業活動の国内外への情報発信や海外展開支援など、 ベンチャー企業等を支援する総合的なイノベーション基盤を形成して

いく。

(5)産業人材が不足

(課題)

- ✓ 量子分野においては世界的に人材が不足し、人材獲得競争も激化している。量子技術を実用化・事業化していくためには、量子分野の研究・技術人材のみならず、多様な技術分野(材料、半導体等のデバイス、アーキテクチャ・システム、ソフトウェア、通信等)の人材も必要となる。
- ✓ さらには、経営・知財・法律人材等の事業化・産業化をサポートする人材とともに、ユーザ分野の人材も育成・確保していくことが重要である。
- ✓ ベンダー企業・ユーザ産業ともに、人材不足が深刻な課題となっており、 長期的かつ戦略的に量子分野の産業人材を育成・確保していくことが必要である。

(基本的対応方針)

- ✓ 大学・研究機関等や産業界など産学が一体となって、学生や産業人材を 含む様々な分野の人材向けの教育プログラムの構築・提供を図っていく とともに、産業界と学術界の人材マッチング(インターン制度等)や異 分野間の人材交流など、国内外を含む産学官の人材交流・流動も推進し ていく。
- ✓ また、国の研究開発等のプロジェクトにおいても、様々な分野の人材が 参画できるような仕組みの形成やテーマの設定等を行っていくことも 重要である。
- ✓ さらには、人材供給源である中学・高校など若年層向けの教育プログラムや科学館展示等を通じたアウトリーチ活動等も充実を図っていく。

5. 取組の方向性

(1)量子コンピュータ(ソフトウェア、利用環境整備等)

- ✓ ユーザ産業の拡大・振興に向けたユースケースづくり、アプリケーション 提供/利用支援サービスの提供事業者の育成・振興、アプリケーション開 発人材の育成・確保、ユーザ産業側の人材の量子技術に関するリテラシー の向上、量子コンピュータの経営視点や ESG 視点での効果や、既存シス テムと比較した性能指標等の検討をする。
- ✓ 量子コンピュータも活用したユースケースづくりを加速するために、官 民が連携して幅広いユーザが容易にアクセスできる利用環境を整備して いく。
- ✓ 国産実機(超伝導量子コンピュータ(ゲート・アニーリング))を産学官で多様な用途で活用していくとともに、古典コンピュータと連携して、産業化をリードする実利用環境構築、産業・科学のフロンティアを開拓する最先端の量子・古典ハイブリッド計算環境を構築・提供する。

①ユーザ産業の創出と振興

Oユースケースづくり支援等

- ✓ 量子コンピュータ市場の裾野拡大をしていくためには、国内外のユーザ 産業における価値を明確化し、ニーズを発掘し新たな市場を創出してそ の拡大と振興(参画促進・マーケット創造)に向けた取組が重要である。 一方で、ユーザ産業にとっては、自社のビジネスにどのような便益があ るのか(既存技術との比較も含む)について不明確であるため参入が進 まない傾向にある。
- ✓ このため、ユーザにとって魅力のあるユースケースづくり(キラーアプリケーション)の支援を積極的に行い、新たなユーザの参画を促進していく。ユースケースづくりに当たっては、幅広い産業の参画や投資行動を促進するためにも、実際の産業現場での実利用や量子・古典のハイブリッド環境での利用を想定するなど、産業視点で説得力・訴求力があるものが望ましい。例えば、あるユースケースの計算課題に対して全て量子で行うのではなく、量子・古典を上手く使い分け、実利用を通して検証し、古典を量子に上手く置き換えてマイグレーションしていくなど、実際の実利用に落としてユースケースを検証していくことが重要である。
- ✓ また、ユーザ産業の人材は専門知識を有していないケースが多いことか。

- ら、ユースケースづくりやリスキリング教育プログラム等の提供を通じ てユーザ産業側の人材の育成・確保もしていく。
- ✓ さらに、各ユースケース分野において複数の企業が参画するコンソーシアム等を形成し、複数のユーザ企業が情報交換や意見交換をしながら、必要に応じて、協調領域においてユースケースづくりを進めていくことも重要である。この観点では、例えば、社会課題を解決するまちづくりなど対象として総合的に様々な分野のユースケースづくりを行うことによって、分野・組織横断的に取組を進め、自治体も巻き込んで将来の公共調達(自治体利用等)につなげていくことも有効である。

〇ユーザ産業視点での量子技術利用の効果・性能指標の検討

- ✓ 幅広い産業の量子コンピュータの利用や投資行動を促進するためには、 RoI 等の経営視点や、SDGs・脱炭素等を含む ESG 視点で、量子コンピュータの利用が事業活動にどのような効果を生み出すのかについて、経営者や投資家に対して示していくことが重要である。
- ✓ このため、経営視点や ESG 視点で、量子コンピュータの利用による事業活動への効果(将来の効果も含む)を適切に評価できる指標を検討する。また、この効果指標を活用し、経営者や投資家等が、量子コンピュータ等を利用する事業活動を正しく評価し、経営・投資に活用できる仕組みの構築も併せて検討を進める。
- ✓ また、ユーザ産業にとって、量子コンピュータが既存技術と比較して性能的に優位性があるのかを理解・判断できるようにするため、ユースケースの結果等も踏まえつつ、量子コンピュータやソフトウェア(アルゴリズム)、量子・古典ハイブリッドシステムの性能指標(既存技術との優位性、実利用でのベンチマーク等)を検討する。さらには、ユーザが複数の量子コンピュータやソフトウェア等の性能を比較できるようにするための仕組みの構築(共通のインターフェイス(ライブラリ等)等)を進めていく。なお、性能指標の検討の際には、現時点での量子コンピュータの性能は限界があることから、将来の技術発展による性能指標の向上の見通しも含めて検討する。

②ソフトウェア産業の振興

〇アプリケーション提供/利用支援サービス提供事業者の育成・振興

- ✓ 量子コンピュータは、実機やプラットフォーム毎にプログラミング言語 やライブラリが異なるほか、一定程度の専門知識が必要となるなど、一 般のユーザにとっては敷居が高い。
- ✓ 近年、量子コンピュータの利用支援サービス(開発環境提供やコンサル ティング含む)やアプリケーション・ソフトウェア等を提供する民間事

- 業者が活発化している。これら民間事業者の多くはベンチャー企業であり、量子コンピュータのユーザビリティ向上に貢献し、さらにはユーザと量子コンピュータ利用をつなぐハブとなるキープレイヤーでもある。
- ✓ このような民間事業者を活用しながら、ユーザが複数の量子コンピュータを共通のインターフェイスで利用できる開発環境・ソフトウェア(アプリケーション、ライブラリ等)を整備するなど、ユーザが量子コンピュータを容易に利用できる環境を整備していく。
- ✓ また、国が量子コンピュータの利用環境整備をしていく際には、このような民間事業者も活用しながら、ユーザにとって利便性の高い利用環境と機会を整備・提供していく。

③ソフトウェア開発のための量子コンピュータ利用環境の整備 Oフロンティアを開拓するフラッグシップ計算環境の整備

- ✓ 今年度中に、理化学研究所(以下「理研」という。)において国内初の国産実機(超伝導量子コンピュータのテストベッド)を発表し、運用を開始する予定である。
- ✓ 本テストベッド機は、国産機の特性を生かしてハードウェアの深い層まで制御可能であることから、運用開始後は、ソフトウェア(誤り抑制・訂正等)からミドルウェア(アーキテクチャ・システム)、ハードウェア(制御装置等)までのコア技術の育成・高度化、量子・古典ハイブリッド技術開発など、産学官が多様な用途で活用できる環境を構築する。
- ✓ さらには、理研において、本テストベッドを含む最先端の量子コンピュータの実機と富岳等の古典コンピューティングと連携させて、量子技術のみならず、計算科学、数理科学のコミュニティも巻き込み、産業・科学のフロンティアを開拓していく最先端のフラッグシップとなる量子・古典ハイブリッド計算環境を提供するアドバンスト・コンピュテーション拠点の整備を進める。

〇産業化をリードする実利用計算環境の整備

- ✓ 国内企業は、来年度以降、理研の量子コンピュータ実機の技術移転を受けて、実機をリリースしていく予定である。また、国内企業は産業技術総合研究所(以下「産総研」という。)と連携して、量子アニーリングマシン(超伝導型)の実機を来年度に公開予定で、商業利用を開始する予定である(従来型技術による古典アニーリング技術は既に幾つかの国内企業からリリースしている)。
- ✓ これらの国産商用機を中心とする量子コンピュータの利用を促進していくため、官民が連携しつつ、幅広いユーザが容易にアクセスできる、 産業化をリードする実利用計算環境(量子・古典ハイブリッドを含む)

- を整備していくとともに、これらを活用したユースケースづくりを支援していく。
- ✓ また、国産量子コンピュータは黎明期でもあり、実際のユースケースにおいては、量子シミュレータや実用化されている古典アニーリングマシン、さらには商用化で先行する海外量子コンピュータの利用環境も有益であることから、国産・海外産問わず、ユースケースの創出に必要な実機を技術的な有効性等の観点から精査・選定し、活用も視野に入れて利用環境を整備していく。

(2) 量子コンピュータ(ハード、基盤技術等)

- ✓ 量子コンピュータ(ゲート)の技術方式として先行する超伝導型については技術開発・事業化を強化・加速する。さらに、運用の経験・ノウハウ蓄積やその担い手となる人材を育成していくとともに、運用やユーザエクスペリエンス等の結果をハード開発にフィードバックできる仕組みを構築する。その他の方式については、ベンチャー企業を含む民間企業の参画・活動を促進するための取組に努める。
- ✓ 量子コンピュータ(アニーリング)は、他国が先行する中で、技術開発・事業化を強化・加速するとともに、量子・古典ハイブリッドのような強みとなる差別化要因をつくることも期待される。
- ✓ 安定的かつ強靭なサプライチェーンを構築していくため、必要なデバイス、部品、材料等を明確化し、中小企業も含む多くの企業の参画の下で研究開発・製造を進める体制づくり等を通じて、これらの高品質化や安定供給を実現する。我が国の産業が強みを有する部品・材料などサプライチェーンのチョークポイントを押さえていく戦略を検討する。

①量子コンピュータ (ゲート)

<超伝導量子コンピュータ>

〇量子コンピュータの技術開発支援

- ✓ 量子コンピュータの技術方式としては超伝導型が先行しており、海外が 活発に技術開発・事業化を進めている中、我が国においても、産学官が 一体となって国産機の開発を進めている。国産機の開発は、ソフトウェ アからハードウェアまでの要素技術やシステム全体の様々な関連技術 の育成・高度化とともに、量子・古典ハイブリッド技術開発のためのハ ード、アーキテクチャの設計に貢献するなど大きな意義を有する。
- ✓ 今年度中に理研において国内初の国産実機をリリースし、その後も国内ベンダーが理研と連携して実機を来年度に公開予定であり、今後も、海外と伍していくためにも、引き続き、技術開発を強化・加速していく。なお、量子コンピュータの制御には、量子多体系や散逸系の制御など基礎科学の知見を必要とすることから、理研が学理に基づく量子状態制御技術等のコア技術の研究開発を担い、ベンダー企業がこれらのコア技術を活用した大規模化・システムを担っていくことが期待される。
- ✓ さらには、国産実機については、今後は運用フェイズに入ることから、 運用の経験・ノウハウ蓄積やその担い手となる人材を育成していくとと もに、運用やユーザエクスペリエンス等の結果をハードの研究開発にフィードバックできるような仕組みも構築する。

〇民間商用機の事業化支援・国際競争力強化等

- ✓ 今後、民間商用機がリリースされる予定であるが、超伝導方式は他の方式と同様に技術として確立しておらず、長期にわたる研究開発を必要とし、さらには実用化・大規模化等のためには莫大な費用を要するなど、民間企業のみではリスクが高いとの指摘もある。
- ✓ このため、産総研において、量子チップ等の要素技術の基礎研究や、大規模化に向けた試作・試験・評価等プロセス(量子チップの試作・評価、周辺部品の極低温化のテスト等)において、民間企業の活動を支援できるような環境づくりを進めていく。
- ✓ このため、主要拠点である理研・産総研において、理研は基礎的な段階での研究開発を支援し、産総研は大規模化に向けた試作・試験・評価等プロセスで産業界を支援するなど役割分担を明確化するなどして、双方が協力・連携して民間企業の活動を支援していく。

<その他のゲート方式(イオントラップ、光、シリコン、原子等)> 〇産業界の参画促進、連携体制の強化

- ✓ イオントラップ、光、シリコン、原子等については、我が国においては、 国のプロジェクト(ムーンショット型研究開発制度等)を中心に研究開発を加速している。
- ✓ 海外では民間企業を中心として、様々な技術方式において事業化を進めており、我が国においても積極的に民間企業とパートナーシップを構築して、将来の産業化・事業化を見据えて取り組むことが重要である。
- ✓ また、本年春に量子コンピュータ(ハード)分野の国内初のベンチャー企業が発足し、今後、量子コンピュータ/量子ネットワーク(光・原子のハイブリッド方式)を開発・リリースしていく予定である。長期的投資を必要とし、リスクも高い先進的な技術方式を進めるベンチャー企業にとっては、国プロジェクト支援を活用していくことも有効な手段である。このため、ベンチャー企業の活動の後押しとなるような国プロジェクトの充実や仕組みの構築を図っていく。

②量子コンピュータ(アニーリング)

〇量子アニーリングマシンの技術開発・事業化支援等

✓ 本格的な量子技術の利用には長期的な技術開発が必要であるため、持続的な研究開発と産業利用開拓・拡大の循環(エコシステム)をいち早く形成していくために、事業化・実用化が近い量子アニーリングマシンを開発し、これを活用した新市場の創出や事業の拡大をしていくことが必要である。

- ✓ 国内企業は産総研と連携して、量子アニーリングマシン(超伝導型)の 実機を来年度に公開予定で、商業利用を開始する予定である。他国(D-WAVE)が先行する中で、海外に劣後することがないように、引き続き、 技術開発・事業化を強化・加速していくとともに、従来型(古典)コン ピュータと連携させた計算機システム/サービスの開発・提供など強み や差別化要因を目指して取組を進める。
- ✓ さらに、早期に量子技術を社会実装していくため、幾つかの国内企業からリリースされており、我が国が強みを有している従来型技術による古典アニーリングマシンを量子アニーリングマシンと補完して活用し、総合的な事業形成を進める。

③共通基盤技術

〇量子コンピュータのグローバルな事業化に必須となる部品等の高度化と サプライチェーンの強靱化

- ✓ 量子コンピュータ/量子アニーリングマシンを安定的に開発・事業化していくためには、制御装置、冷凍機等のデバイス、部品、材料等の高度化を図っていくとともに、複数企業の連携エコシステム(水平分業・垂直統合等)を形成し、安定的かつ強靭なサプライチェーンを確保していくことが重要である。
- ✓ このため、必要なデバイス、部品、材料等の整理・明確化するとともに、 サプライチェーンの担い手となる有望な産業も調査・同定するなどして、 多くの企業の参画や投資喚起を図る取組を進める。さらに、中小企業も 含む多くの企業の参画の下で研究開発・製造を進める体制づくりなどを 通じて、デバイス等の高品質化や安定供給を実現していくための仕組み を構築することが期待される。
- ✓ また、部品・材料など我が国が強みを発揮できる分野や、我が国として 優先すべき分野等を特定するなどして、サプライチェーンのチョークポ イントを押さえ、有志国との連携・協調によるグローバルサプライチェ ーンにおける我が国の技術・企業の不可欠性を明確にしていく戦略を検 討・実践していく。

(3) 量子セキュリティ・ネットワーク

- ✓ 国内外のユーザ産業の発掘・拡大をしていくため、訴求力のあるユースケースづくりや公的機関によるアンカーテナンシー/アーリーアダプタとしての利用も促進する。
- ✓ 国内ベンダー企業の事業を後押していくためにも、広域テストベッドでの運用等を通じて、技術開発の支援を行うとともに、運用や利用(ユースケース)の実績を蓄積し、官民が一体となって海外展開していく。さらには、利用拡大・普及のための量子暗号通信機器の国内認証基盤の構築を推進する。
- ✓ また、量子・古典ハイブリッドによる総合的アーキテクチャの構築、量子 暗号通信の広域テストベッドの充実・強化を図る。さらに、将来を見据え た量子インターネットの研究開発や導入ロードマップの検討を進める。

①量子セキュリティ・ネットワークの産業振興

〇ユーザ産業の振興・拡大

- ✓ 国内外のユーザ産業を発掘・拡大していくためには、量子暗号通信の広域テストベッド(QKD ネットワーク)等を活用し、新たなユーザを訴求する魅力的なユースケース(キラーアプリケーション)づくりの支援を行っていくことが重要である。
- ✓ 特に、有望な事業領域である金融や医療、製造業、安全保障等において、 利用促進等を行っていくことが期待される。この際には、安全性、コスト、ユーザビリティのバランスに留意してユースケースづくりをしていく視点も重要となる。
- ✓ 将来の本格的な利用・普及に向けて、ユースケース等も踏まえながら、 各分野のルール・ガイドライン等において量子セキュリティの利用を推 奨するなど、ユーザの利用インセンティブ向上に向けた取組に努めるこ とも期待される。また、自治体等の公的機関においてアンカーテナンシ ー/アーリーアダプタとして利用促進を支援していく取組も重要となる。

〇量子セキュリティ・ネットワークの事業化支援・国際競争力強化

- ✓ 国内ベンダー企業は、既に1社が量子暗号通信の商用機をリリースして おり、国際展開も視野に入れて事業展開に積極的に取り組んでいる。さ らには、来年度以降も新たに国内ベンダー企業1社が参入し、商用機を リリースする予定である。
- ✓ 国内ベンダー企業の事業を後押していくためにも、前述の広域テストベッドでの運用等を通じて、技術開発の支援を積極的に行う。さらに、運用や利用(ユースケース)の実績を着実に蓄積するとともに、これらの

- 実績を活用しつつ、官民が一体となって海外展開を支援していく。さら に、標準化・知財化を強力に進めるなどして、国内外に展開・普及して いくことが重要である。
- ✓ この際には、ハードベンダーだけではなく、将来の利用支援サービス(ア プリケーション)を担う民間事業者の育成も視野に入れて取り組んでい くことが重要である。

○量子暗号通信機器の国内認証基盤構築の推進

- ✓ 近年、サイバー攻撃によって事業継続が困難になる深刻な国内事例も散見されており、ユーザにとってセキュリティ確保は極めて重要な課題となっている。このようなセキュリティ確保の重要性に鑑みると、ユーザが量子暗号機器を導入する際には、各機器が求める性能を確実に保証しているかどうかを判断できる仕組みが求められる。また、来年度以降、複数社から量子暗号通信機器がリリースされるが、ユーザにとっては客観的な指標で当該機器を性能比較できる仕組みも求められる。
- ✓ これらを踏まえると、量子暗号通信機器の利用拡大・普及のためには、 第三者機関による機器認証制度の整備が必要であり、認証制度の検討と ともに、評価機関等の運用・管理体制をはじめとする国内認証基盤の構 築に向けて取り組むことが重要である。
- ✓ この際には、評価機関として民間事業者を活用して国内認証制度をエコシステムとして自律化させていく仕組みの構築や、担い手となる人材の育成・確保も重要となる。さらに、認証制度の検討に当たっては、今後の海外展開を見据えて、制度面での国際連携・協調にも留意していくことが重要である。

②量子セキュリティ・ネットワークの利用環境整備と利用実証の拡大 〇量子・古典ハイブリッドによる総合的アーキテクチャの構築・検証

- ✓ 量子セキュリティ・ネットワークを利活用・普及させていくためには、 ユーザの利便性を確保しつつ、古典アーキテクチャからのマイグレーション(システム移行)をしていくことが必要である。
- ✓ この際には、量子暗号、量子ストリーミング暗号、耐量子計算機暗号 (PQC)、秘密分散、秘密計算等の多様な量子・古典暗号の強み・弱み を補完し合ってベストミックスを検討していく視点が重要である。
- ✓ このような量子・古典のベストミックスを検証できる環境を整備していくため、量子暗号、量子セキュアクラウド、量子コンピュータ等を含む量子統合アーキテクチャ(量子技術プラットフォーム)を構築・検証することが必要である。

〇量子暗号通信の広域テストベッドの充実・強化

- ✓ 総務省・NICT が整備する量子暗号通信の広域テストベッド (QKD ネットワーク) は、幅広いユーザが量子暗号通信の用途で利用できる貴重な プラットフォームとなっている。
- ✓ 今後も様々な利用実証拡大を図っていくため、衛星等の宇宙アセットまでを含む都市間の量子暗号通信ネットワークを構築するとともに、都市間〜全国規模に拡大していくことが重要である。
- ✓ この際には、量子・古典をベストミックスさせたユースケースづくりに も貢献するようにテストベッド環境を構築・高度化していく視点が重要 となる。

③量子セキュリティ・ネットワークの高度化 〇量子インターネットの研究開発の方向性

- ✓ 量子状態で遠距離を通信する量子インターネットは、秘匿性の高い量子 暗号通信のほか、複数の量子コンピュータの接続による計算を可能とす る将来技術として期待されている。
- ✓ また、将来の量子インターネットの実現に向けて新たなスタートアップ 企業も出現している。
- ✓ これらのベンチャー企業をはじめとして将来の産業の振興も視野に入れつつ、デバイスやアーキテクチャ・プロトコルを含めて研究開発や技術実証を推進していくとともに、量子インターネットの導入に向けたロードマップの具体化に向けて検討を進めていくことが重要である。

(4) 量子センシング/量子マテリアル

- ✓ 量子センシング産業の振興のため、幅広い産業界に対して量子センシング技術・利活用について積極的な情報提供、技術開発・事業化の支援を行うとともに、産学官の関係者が情報共有・意見交換を行うことができる産学官のコンソーシアム等の体制づくりを行う。
- ✓ ユーザ・ベンダー企業に対して、量子センシングを容易に利用・開発できる環境の整備・提供や技術開発・事業化の支援を行うとともに、ユーザにとって訴求力のある魅力的なユースケースづくりや事業化に向けた技術の開発・実証等の支援を積極的に行っていく。
- ✓ 量子技術の開発・事業化やユースケースづくりの際には、マテリアル分野の産業の参画の下、ハード・ソフトが一体となって技術開発・事業化を推進できる環境づくりを推進する。さらに、産学官が一体となって、我が国として押さえるべき量子マテリアルを安定的に供給できる体制を構築する。

①量子センシング産業の振興

〇量子センシングの技術開発・事業化支援

- ✓ 量子センシングについては、医療、エネルギー、通信、モビリティなど 多様な用途があり、多様な産業界の参画の下、技術開発・事業化を進め ていくことが重要である。
- ✓ このため、主要拠点である量子センサ拠点及び量子生命拠点が中心となり、ユーザ・ベンダー企業など幅広い産業界に対して量子センシング技術・利活用について、実用化の段階や既存技術との優位性も含めて積極的に情報提供していく。さらに、技術開発・事業化を支援していくことが重要である。また、トップ性能を追求する基礎研究に加えて、小型モジュール化・チップ化など実用化に落とし込むためのエンジニアリング技術も含めて、産学官が一体の下で技術開発・事業化を進めていく。さらには、既存システムに量子センシングを融合した統合的な視点も留意して進める。
- ✓ また、多くの企業の参画の促進や複数企業の連携エコシステム(水平分業・垂直統合等)を支援していくため、多様な産学官の関係者が情報共有・意見交換を行うできる産学官のコンソーシアム等の体制づくりも推進する。

〇量子センシングの利用・開発環境提供

✓ 量子センシング技術については、多くの企業にとって技術的な障壁が高

- く、さらには量子コンピュータと異なり、実世界のハードウェアの利用も伴うものが多いことから技術・利用面での支援も重要となる。
- ✓ このため、ユーザ・ベンダー企業に対して、量子センシングを容易に利用・開発できるオープンな環境(特に、幅広い産業用途に活用できる固体量子センサ、超偏極技術、光格子時計ネットワーク等)を提供するとともに、ユーザニーズに応じて必要な技術・利用面での支援を進めていくことが必要である。
- ✓ また、量子センシングの本格的な利用・普及のため、量子センシング技術の標準化の取組や、量子センシングを活用した計測標準に向けた取組も推進する。

〇ユーザ産業の拡大・振興

- ✓ 量子センシングの産業の振興のためには、量子センシングを利用する 様々なユーザ産業の発掘・拡大によってユーザのマーケットを拡大して いくことが重要である。
- ✓ このため、量子センシングの利用環境の提供等も通じながら、多くのユーザにとって訴求力のある魅力的なユースケースづくりや事業化に向けた技術の開発・実証等の支援を積極的に行っていくことが重要である。
- ✓ この際には、ユーザが量子センシング技術を採用しやすいように、量子 センシングの性能や既存センシングとの優位性(コスト、品質、生産等 も含む)も含めて、正確で分かりやすい情報提供を積極的に提供してい くことが重要である。

②量子マテリアル産業の振興

〇量子マテリアルの技術開発・事業化支援

- ✓ 量子マテリアルは、量子コンピュータ、量子センシング、量子ネットワークの基盤となる技術であり、かつ我が国の産業界が強みを発揮できる技術分野でもある。一方で、量子技術が確立していない、あるいはユースケース・マーケットが確立していないことから、現状では、売上予測や事業リスクの見通しが立てにくく、マテリアル分野の産業の参入障壁は高いとの指摘もある。
- ✓ このため、量子技術の研究開発やユースケースづくりの際には、早期に 実現できる可能性のある用途を発掘するとともに、早期の段階から、将 来の市場性の見通しや効果を明確化し、広く情報発信していくことに努 める。
- ✓ また、迅速に産業化の取組を進める観点からも、早期の段階から、マテリアル分野の担い手となり得る産業の参加も促進し、ハード・ソフトが 一体となって技術開発を推進する体制を構築し、複数企業の連携エコシ

ステム(水平分業・垂直統合等)の形成を目指す。

O量子マテリアルのサプライチェーン構築

- ✓ 量子マテリアルは量子技術の基盤となる技術であり、我が国として押さ えるべき重要な量子マテリアルについて安定的なサプライチェーンを 構築していくことが重要である。
- ✓ このため、主要拠点である量子・AI 融合技術ビジネス開発グローバル拠点(仮称)、量子技術基盤拠点(仮称)、量子マテリアル拠点が連携し、産学官が一体となって、ユーザニーズを踏まえながら、我が国として押さえるべき量子マテリアルを検討した上で、量子マテリアルを安定的に供給できる体制の構築を行う。
- ✓ さらに、将来の量子産業を見据えて、量子マテリアル(川上・上流)と 量子デバイス産業(川下・下流)が連携する産業エコシステムの形成に 向けても取り組むことが重要である。

(5) イノベーション基盤

〇量子産業のグローバル連携・展開

- ✓ 将来、量子産業の世界的に巨大な市場が見込まれる中で、海外市場を獲得していくためには、官民が一体となった国際展開や産業間でのグローバルな連携(技術協力、事業提携等)等を推進していくことが重要である。また、将来の海外展開を見据えて、ユースケースを海外(欧米・アジア等)での実証をしていくことも有効である。
- ✓ このため、先行している QKD ネットワークをはじめとして、量子技術の利用・技術実証で蓄積したノウハウ・実績を活用して、官民が一体となって、製品・サービス等の国際展開やグローバルな情報発信を推進していく。この際には、海外政府系機関(大使館等)等も活用し、現地のネットワークも活用していく。また、スタートアップ・ベンチャー企業等の中小企業においては、海外展開の機会に乏しいケースが見られることから、海外見本市出展や情報発信の支援などきめ細かな支援をしていく。
- ✓ さらには、産学官の様々な階層における国際協力・対話・交流等を通じて、グローバルな産業連携、海外市場展開、国際標準の獲得等に向けて取り組む。

Oスタートアップ・新事業等の創出基盤の整備

- ✓ 我が国において、ソフト・ハードともにスタートアップ/ベンチャー企業(既存企業の新事業部門やカーブアウトベンチャー等も含む)が増加している。それぞれのステージ・特徴に応じて、各種支援を充実させながら、将来のベンチャーエコシステムの形成に向けて取り組んでいくことが重要となる。
- ✓ また、金融機関、インキュベーション事業者、パートナー企業等とのマッチング等を通じたベンチャー企業の創出・支援、スタートアップの担い手となる若手起業人材育成、人材マッチング(研究人材と経営人材とのマッチング等)、量子技術を活用したビジネスアイデアを創出する仕組み(ピッチコンテスト、アイデアソン/ハッカソン等)、既存企業との連携やベンチャー企業同士の連携などエコシステム形成、事業活動の国内外への情報発信や海外展開支援など、ベンチャー企業等を支援する総合的なイノベーション基盤を形成していくことが重要である。
- ✓ 将来的には、このようなイノベーション基盤の形成を担い、VC機能や シンクタンク機能も備えたスタートアップ・ベンチャー企業を支援する 官民一体型の組織づくりの在り方も、各種制度の活用も視野に入れて検 討する(P)。
- ✓ 量子分野は長期的な投資が必要である分野のため、産学官が一体となっ

てスタートアップ・ベンチャー企業等を支援していく公的なプロジェクトの充実・強化を図っていく。

〇産業人材の育成・確保

- ✓ 量子分野においては世界的に人材が不足し、人材獲得競争も激化しており、産学官が一体となって、有志国とも連携しながら、長期的かつ戦略的に量子分野の産業人材を育成・確保していくことが重要である。
- ✓ 将来の産業を見据えると、量子分野の研究・技術人材のみならず、関連する技術分野(材料、半導体等のデバイス、アーキテクチャ・システム、ソフトウェア、通信等)の人材を育成・確保していくことが重要である。また、ユーザ分野の産業においても量子技術を使いこなすことのできる人材をリスキリング等により育成・確保していくことが必要となる。さらには、事業化・産業化のためには、経営・知財・法律人材等の人材の育成・確保も必要となる。また、AI やクラウド、IoT のような DX 関連産業については、量子コンピュータ等との連携によるシナジー効果も期待されることから、これら人材へのリスキリングも効果的であると考えられる。
- ✓ このため、これらの産業界の各層の人材にどのようなスキルが必要なのかを設定しながら、効果的な教育プログラムを検討・作成した上で、産業の様々な層の人材に対して教育プログラムを提供するなど教育支援を進めていく。さらに、将来の産業人材の供給源である大学等の学生、中学・高校など若年層向けの教育プログラムや科学館展示等を通じたアウトリーチ活動等も充実を図るなどして、若年層から産業界までシームレスな教育機会を提供する。
- ✓ また、教育プログラムを受講した人材に対する検定制度等により、人材の質を保証することで、雇用や起業等の機会を拡大する仕組みも検討する。
- ✓ さらに、産学間や異分野間での人材マッチング(例えば、産学の人材マッチングイベントや、経営者や技術者等の人材プールやマッチングの仕組み、産業課題等に取り組む学生のインターン制度等)、国内外を含む産学官の人材交流・流動も推進するなどして、人材育成のエコシステムを形成する。

O産学官の新たなパートナーシップ体制構築

✓ 産学官が連携を強化し、一体となって取り組むためには、産業界が中心となる組織「量子技術による新産業創出協議会(Q-STAR)」と、公的研究機関・大学等が中心となる組織「量子技術イノベーション拠点(QIH)」が、これまで以上に情報共有・交流・連携していくことが期待される。

- ✓ このため、QIH と Q-STAR が組織的に情報共有・交換を行うための定期的な場の設置や人材交流等の新たなパートナーシップの体制(Q-Partnership(仮称))の構築など、産学官の連携体制を強化していくための取組を推進する。
- ✓ 国のプロジェクトの研究の進捗状況・成果についても、このような場で 積極的に共有し、今後の産学官の連携による技術開発・事業化に向けた 取組の充実・強化を図っていく。

〇標準化・知財化・ベンチマーク設定等

- ✓ 将来、量子産業の巨額な市場が見込まれる中で、我が国が海外市場を獲得して、経済成長の弾みとしていくためにも、標準化・知財戦略を含めて国際競争力の強化に向けて取り組んでいくことが重要となる。
- ✓ このため、産学官が一体となって、量子コンピュータ、量子センサ、量子通信機器等の量子デバイス(材料・部品等を含む)の標準化すべき技術を検討した上で、標準化の既存の枠組みや関係者を巻き込んで取組を推進し、市場におけるルール形成に強く関与していく。
- ✓ 量子技術イノベーション拠点等においても、他の最先端技術の研究開発 と同様に「知的財産推進計画³」等の方針を参照しつつ、積極的に知財化 を進めていくなど取組を強化する。
- ✓ また、ユーザにとって重要となる量子デバイスの経営視点・技術視点での効果・性能(既存技術に対する量子の優位性も含む)に関するベンチマーク指標・技術に関する情報の検討・設定・提供も積極的に行っていく。

〇戦略的サプライチェーンの構築に向けた取組

- ✓ 量子コンピュータ、量子センシング・量子マテリアル、量子ネットワークの研究開発・事業化を安定的に進めるためには、高度なデバイス・部品・材料を安定的に供給する戦略的なサプライチェーンの構築に向けた取組が重要である。
- ✓ このため、産学官が連携し、我が国として確保すべき重要なデバイス・ 部品・材料を検討した上で、サプライチェーンマッピングを検討し、戦 略的視点でこれらの安定的なサプライチェーンの構築を行っていく。
- ✓ この際には、量子コンピュータ、量子センシング、量子ネットワークに 固有・共通のデバイス等や民生品の活用等についても検討し、経済合理 性を踏まえた検討を行う。
- ✓ さらには、担い手となる企業(中小企業も含む)も発掘するなどして裾

-

³ 例えば、「知的財産推進計画 2022」首相官邸 知的財産戦略本部

野広い産業のエコシステムを構築し、経済波及効果の高い裾野の広い市場を形成していくことが期待される。

Oプラットフォーム戦略・共創環境構築

- ✓ 量子コンピュータ等の量子技術は未だに技術方式や勝ち筋は決定しておらず、将来の技術方式によらず共通的に必要となるプラットフォーム技術を押さえ、我が国の産業の強みを最大限に生かしていく戦略(プラットフォーム戦略)も重要となる。このため、産学官が一体となって、前述のサプライチェーンマッピングの議論と並行して、我が国産業として注力すべき技術(プラットフォーム技術)を検討した上で、これらの技術の開発・製造基盤の整備在り方も含むプラットフォーム戦略を検討していく。
- ✓ また、将来の実用化・大規模化のためには巨額の投資を必要とし、さらには将来の技術方式が不透明な中では、単独の民間企業のみで取り組むのはリスクが高いケースもあることから、協調領域と競争領域を考慮した上で産業支援を積極的に行っていく視点も重要となる。例えば、半導体等の試作・試験・評価等プロセスの共有、共通技術の開発、共通部品等のサプライチェーン構築、ベンチマーク設定、標準化など、複数社で連携して取り組むことが効果的かつ効率的である領域も考えられる。
- ✓ このため、産学官の連携の下、協調領域と競争領域で実施すべき取組を 踏まえながら、協調領域については、複数社が連携してオープンイノベ ーションで取り組むことができるような体制・仕組みづくりや必要な支 援を行っていく。

〇量子技術イノベーション拠点の強化(調整中)

我が国の産業の強みを生かし、各産業分野と量子技術を融合・連携しながら、 産業界における新産業創出、生産性向上、社会課題解決等といった新たな価値 の創出を強力に支援していくため、以下のとおり、量子技術イノベーション拠 点を強化する。

「量子・AI 融合技術ビジネス開発グローバル拠点」(産総研)(強化)

✓ 我が国を量子技術の産業利用の国際的なハブとすべく、グローバル企業やスタートアップ・ベンチャー企業の巻き込みも念頭に、量子技術の産業化に関するグローバルな開発拠点を創設する。ハードウェアの研究開発のみならず、使用可能な量子コンピュータを活用した新たなビジネス創出に向けた環境をいち早く整備し、ユースケース創出や人材育成等を図っていく。量子コンピュータのサプライチェーンに関して、低温テスト環境を世界に先駆けて整備・提供することで、国内外の量子コンピュ

ータベンダーとの連携によりニーズやノウハウを収集し、量子コンピュータ等のシステム化や部品・材料の開発・評価を支援し、量子デバイス・集積回路の開発・試作を支援する環境・サービスの提供など、大規模商用機実現に向けて総合的に産業活動を支援する。

「量子コンピュータ開発拠点(ヘッドクォーター拠点)」(理研)(強化)

✓ 量子コンピュータをはじめとする量子技術の最先端かつ広範な基礎学理研究を強力に推進し、研究成果の企業への技術移転を進める。また、最先端の量子コンピュータの実機と富岳等の古典コンピューティングと連携させて、量子技術のみならず、計算科学、数理科学のコミュニティも巻き込み、最先端のフラグシップとなる量子・古典ハイブリッド計算環境を提供するアドバンスト・コンピュテーション拠点の整備を進めるとともに、これを活用して新たな産業・科学のフロンティアを開拓する。

「量子フロンティア産業創出拠点(仮称)」(東海国立大学機構)(新規)

✓ 我が国の産業が強みを有する化学・材料等の分野の技術と量子技術の融合により、産学官連携の下で、新たな切り口で化学・材料等の先導的な技術や新たな事業・サービスのフロンティアを開拓し、新産業の創出や産業活動の高度化を支援する。さらに、化学・材料分野と量子技術分野の双方に精通し、両分野の連携・融合の担い手となる人材の育成も推進する。

「サステイナブル量子 AI 研究拠点(仮称)」(東京大学)(強化)(P)

✓ 量子コンピュータの利活用を量子技術イノベーションイニシアティブ協議会(QII)のネットワーク・活動基盤も活用しつつ、量子機械学習、量子シミュレーション、量子埋め込み、量子最適化技術等を高度化・融合し、省工ネ等に優れた持続可能な計算基盤(量子 HPC 基盤)を構築し、産業界が持続可能な形で量子 AI 技術を活用して新たな価値を創造できる環境づくりを行う。

「量子技術基盤拠点(仮称)」(量子科学技術研究開発機構)(強化)

✓ 高度な量子機能を発揮する量子マテリアルの開発・供給を引き続き行う ことに加え、量子マテリアルやこれを活用した量子センシング等を産業 界が利用・試験・評価できる環境の整備や利用支援・技術支援を行う。 さらに、光科学技術も駆使しながら、量子状態の高度な観測、制御等を 実現する技術・デバイスの開発など、量子技術の基盤をなす研究開発や 産業支援を推進する。

6. さいごに

量子産業は、ハードからソフト、サービスまでの様々な分野が総力を結集して 取り組むべき産業分野であり、いわば総合芸術とも言える。このため、様々な分 野の産学官の組織・人材が緊密に連携し、新たな価値を共創していくことが重要 である。

さらに、多くの産業分野が関与することから、関連産業への経済波及効果が極めて高い領域であるとも言える。これを踏まえると、量子技術の成長を起爆材として、我が国の総合的な成長を実現していくことも期待できる。

将来、量子産業の巨大な市場が見込まれており、世界的に投資が過熱・活発化している。しかし、テクノロジーにはある程度の投資熱(ブーム)の波があり、今後、困難に遭うこともあるだろう。このためにも、現在のうちから産学官が結束を高め、一喜一憂せずに、長期的な視点で地道かつ継続的に技術・人材を育み、将来の開花に向けて取り組んでいくことが重要である。また、持続可能な形で投資や人材を惹きつけていく観点から、科学的根拠に基づく正しい情報発信に努めていくことも重要である。

量子産業は新興市場であり、若手人材が起業し、自由な発想で大胆に新たなビジネスに挑戦できる環境を構築していくことも重要である。さらに、既存企業においても、経営者が率先して、若手人材がイントレプレナーとして新しい事業に挑戦できる環境づくりをしていくことが期待される。

量子技術誕生から約 100 年を迎え、量子技術は本格的な実用化・産業化の段階に移行しつつある。各産業が量子技術の活用をきっかけとして、将来の成長の勝ち筋を見つけ、経済社会を豊かにしていくことを期待する。