推薦機関名:独立行政法人 日本学術振興会				
発	表		(フリカ゛ナ) 氏 名	ウメヤマ トモカズ 梅山 有和
		者	所 属 機 関	京都大学工学研究科分子工学専攻
			問い合わせ先	TEL: 075-383-2568 FAX: 075-383-2571 E-mail: umeyama@scl.kyoto-u.ac.jp
新のな	技成		技術の名称	有機太陽電池を指向したナノカーボン複合材料作製技術
			ジャンル	■ ナノテク・材料 □ 医療・バイオ□ 情報関連・IT □ 環境関連□ 製造技術 □ その他
		術果	概 要	化学修飾により可溶化したカーボンナノチューブとフラーレンとの混合溶液を作製し、その溶媒極性を変化させることで、カーボンナノチューブ上にフラーレンが集積したフラーレンネットワーク構造を、湿式系で簡便に作製する技術を開発した。
		۲	マッチングを想定する 業界/用途利用分野	有機薄膜太陽電池(OPV)など
			産業界へのアピール	OPVは、シリコン系の無機太陽電池よりも安価に作製可能であり、かつフ
			ポイント/新規産業形	レキシブル化が可能である。そのOPVの高効率化を目指し、活性層材料と
			成の可能性	して有望なナノカーボン複合材料を開発した。
			従来技術に対する 新規性・優位性	カーボンナノチューブを土台として用いることで、従来は作製困難であった 10-20nm 程度の直径を有するフラーレンネットワーク構造を構築できる。
			実用化に向けた課題	・ より細い直径 (5-10nm 程度) を有するフラーレンネットワークの構築。 ・ フラーレンネットワーク構造と、共役系高分子との複合膜の作製条件 の最適化による太陽電池性能の向上。
			件数	9
関特	連 論	i 文 許	主な論文または特許	1. "Selective Formation and Efficient Photocurrent Generation of [70] Fullerene—Single—Walled Carbon Nanotube Composites", <u>T. Umeyama</u> , N. Tezuka, S. Seki, Y. Matano, M. Nishi, K. Hirao, H. Lehtivuori, N. V. Tkachenko, H. Lemmetyinen, Y. Nakao, S. Sakaki, and H. Imahori, <i>Adv. Mater.</i> , 22 , 1767—1770 (2010). 2. "Carbon Nanotube Wiring of Donor—Acceptor Nanograins by Self—Assembly and Efficient Charge Transport", <u>T. Umeyama</u> , N. Tezuka, F. Kawashima, S. Seki, Y. Matano, Y. Nakao, T. Shishido, M. Nishi, K. Hirao, H. Lehtivuori, N. V. Tkachenko, H. Lemmetyinen, and H. Imahori, <i>Angew. Chem. Int. Ed.</i> , 50, 4615—4619 (2011). 3. 「光電変換素子材料の製造方法及び有機太陽電池の製造方法」 <u>梅山有</u> 和・今堀 博、特願 2009—183653