課題番号: GR053 助成額:122百万円

グリーン・イノベーション

ナノ液体膜の微細パターニングによる機能性薄膜潤滑 システムの創成

張 賀東 名古屋大学大学院情報科学研究科 准教授

Hedona Zhana

平成23年2月10日 ~平成26年3月31日 専門分野

ナノトライボロジー、分子シ ミュレーション、光応用計測 キーワード

トライボロジー/蓮障/表面・界面制御/計測機器/記 憶・記録/薄膜潤滑/ハードディスクドライブ

WFBページ

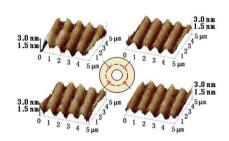
http://www.is.nagova-u.ac.ip/ dep-cs/nanosurf/index.html

研 究

理工系

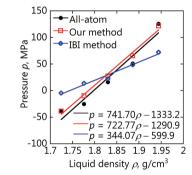
高度情報社会の発展に伴い、情報機器による 消費電力は急増している。とくにハードディスクド ライブ (HDD) は、大容量かつ安価な情報記 憶装置として現在も今後も中核的役割を果たす ため、情報社会の持続的発展には、HDDの省 エネが世界的な重要課題となっている。しかし、 次世代HDDを実現するための潤滑技術が未確 立である。

ディスク表面上のナノメートル(nm)厚さの液体 潤滑膜に、紫外線を選択的に照射することによ り、線幅 100 nm オーダーの機能的パターンと凹 凸パターンを施す方法を世界で初めて提案した。 パターンの最適設計により、材料に固有の特性 を凌駕する新しい機能・性能をもつ潤滑表面を 創成し、省エネ型次世代 HDD の実現を目指す。


代表論文: J. Chem. Phys., 139 (5), 054901-1-11, (2013) 特許出願: 特願 2012-196243 「2面間相互作用力ある いは摩擦力測定用の摺動子アセンブリ、摺動子アセンブリ の製造方法および測定装置」(2012年9月)

新聞:中部経済新聞「研究現場発:パターン利用し次世代 システムに活用」(2011年11月29日)

微細パターニングによる機能創成


ディスク表面にナノ潤滑膜の微細パターニングを実 現し、潤滑膜の摩擦・減耗特性を向上させることに 成功した。超平滑化加工した摺動子と励振抑制構 造のセンサを搭載したトライボテスタを開発して、軽 荷重・高速条件における摩擦特件の高精度な測定 を可能とした。これより、汎用装置では解明できな い特性を明らかにした。

ディスクの全周にわたって、厚さ2 nmの液体潤滑膜表面に形 成した線幅500 nm高低差1 nmの微細凹凸パターン。

高精度な粗視化シミュレーションの実現

新規な粗視化方法を提案し、従来法より広範囲の 熱力学条件に適用可能な粗視化モデルを構築し た。これより、密度や圧力の時間・空間的変動を 伴う液体薄膜の凝着・摩擦現象について、高効 率・高精度の分子論的解析に成功した。

密度を変化させた液体潤滑剤バルク系のシミュレーション結果。 従来のIBI法より、提案した方法で構築した粗視化モデルのほう が、精確な全原子モデルの計算結果を高精度に再現している。

実用性の優れた機能性薄膜潤滑方式の確 立により、微小すきまを隔てた固体二面間の 相対運動を精確かつ安定に実現する。HDD のみならず、マイクロ・ナノマシンや自動車関 連の極限潤滑など、ナノレベルの相対運動を 伴う技術分野の発展に貢献し、低炭素社会 の実現に役立つと期待される。