課題番号: GS029 助成額:177百万円

グリーン・イノベーション

## 根粒共生系の総合的理解による、低窒素肥料農業を目指した 基礎的研究

独立行政法人農業生物資源研究所植物科学研究領域 ユニット長

Makoto Havashi

## 牛物系

平成23年2月10日 ~平成26年3月31日

専門分野 植物分子遺伝学

キーワード

植物微生物相互作用・共生/植物分子機能/植物分子育種/ 植物栄養代謝/発現制御/根粒形成/窒素代謝

WFBページ

http://www.nias.affrc.go.jp/ plant symbiosis/



研 究 背

窒素肥料は化石燃料から化学合成によって生 産され、その際に温暖化ガスが発生し、その供 給は国際動向に左右される。一方、ダイズなど のマメ科植物は根粒菌と共生することで大気中 の窒素を利用できる。この共生的窒素固定を利 用することで、窒素肥料に依存しない低投入・ 持続的な農業の実現が求められていた。



マメ科植物の窒素固定に必要な共生遺伝子の 大半はまだ明らかになっていない。そこで、共生 遺伝子を網羅的に同定する方法論を確立する。 また、根粒形成の鍵因子の同定と機能解明によ り、イネなど主要作物に根粒形成能を付与する 知見を得る。これらにより低窒素農業に資する基 盤形成を目指す。



代表論文: PLoS Genet. 9, e1003352, (2013) 新聞:日経産業新聞「窒素利用のタンパク質、マメ科植物 で発見、農業資源研 | (2013年3月26日)、日本農業新 聞「根料形成の什組み解明、マメ科植物で生物資源研」 (2013年3月26日)、農業経済新聞「根料形成の鍵とな るタンパク質「NIN」の機能解明、チッ素肥料減らした低 環境負荷の農業実現へ | (2013年4月10日)



## 根粒形成の機構を解明

これまで根粒形成を直接制御している転写因 子は不明であった。そこで、その転写因子が NINであることを同定し、その機能を明らかに した。 さらに NIN のターゲットで根 粉形成に必 要な遺伝子を同定したことで根料形成におけ るNINの重要性を示した。



転写因子NINの 過剰発現により 形成された根粒 様構造。根粒菌 が存在しなくても 根粒が誘導され ることから、NIN が根粒形成の鍵 因子であることが



内牛レトロトランスポゾンを活用することで、タ グラインの野外(非閉鎖系)での大量栽培を 可能にし、また、次世代シーケンサーによる網 羅的遺伝子同定方法を開発した。



**圃場におけるタグライン栽培の様子。野外で栽培する** ことにより、タグラインを大規模に展開することが可能に なった。



イネ、トウモロコシ、コムギなどの主要作物に おいて、根粒菌との共生による窒素固定が 可能になることで、これまで化石燃料に依存 し、環境破壊の原因にもなってきた従来型農

業を改革し、低投入・持続的農業を実現し、 食糧の安定した供給が期待される。