課題番号: GS004 助成額:135百万円

グリーン・イノベーション

光合成電子伝達の最適化による植物バイオマス増進の 技術基盤研究

川合 真紀 埼玉大学大学院理工学研究科 准教授

牛物系

平成23年2月10日 ~平成26年3月31日 専門分野

植物分子生物学

キーワード

育種学·植物分子育種/植物分子生物·生理学/ 応用分子細胞生物学・代謝工学

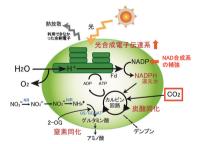
WFBページ

研 究

植物は環境中の無機物質である二酸化炭素を 有機物に変換することができる。この過程が光 合成であり、光エネルギーを化学エネルギーに変 換し、これを利用して大気中の二酸化炭素を固 定する。この過程の律速要因をを改変することに より、植物の物質生産能力や成長を増大させる ことが可能だと考えられる。

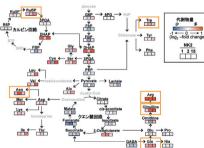
色

本研究では、植物の光合成能力、物質生産能 力の向上のための手法確立を目的として研究を おこなっている。そのため、植物バイオマス生産 性向上の鍵となる光合成電子伝達系の最適化 をはかるため、代謝工学的手法による葉緑体内 還元カプールの増大を試みる。


代表論文: Plant Physiology, 159(3), 1138-1148, (2012)

特許出願:特願 2013-023290 「植物に含有されるシュウ 酸量を低減させる方法」(2013年2月)

植物細胞のNAD(P)(H)量の改良技術の 確立


植物には細胞質と葉緑体中に酸化還元反応の 補酵素であるNADPを合成する代謝系が存在す る。このうち、葉緑体の代謝酵素(NAD キナー ゼ)の発現量を増加させることにより、細胞内の NAD(P)(H)プールを増大させることに成功した。

光合成電子伝達系の改変と植物物質生産代謝 系。NAD合成力の強化が様々な物質代謝系の 駆動に結びつく。

光合成電子伝達速度の改変

葉緑体NAD キナーゼを活性化したイネ、シロイヌ ナズナでは、光合成電子伝達系の亢進と、光合 成の増大が検出され、葉緑体 NADP(H)量の制 御が植物の物質生産能力の向上に重要な要因 であることが明らかとなった。また、特定アミノ酸の 含有量が変動するなど、有用成分の含有量の制 御などに本手法が適用可能であると考えられる。

NAD キナーゼ活性化イネ (NK2系統) でおきた代謝変 動の結果。カルビン回路の代謝物や特定のアミノ酸含有 量が増加していた。

地球規模の気候変動、食料の不足などの観 点から、大気中の二酸化炭素を固定できる植 物の力が注目されている。植物のバイオマス を増加させる技術は、バイオエネルギーの生

産、食料の増産にも結びつくと考えられる。 今後、モデル植物から実用作物への研究展 開が期待される。