課題番号: GS006 助成額:164百万円

グリーン・イノベーション

放線菌の潜在能力の発掘・活用による有用物質の微生物生産 に向けた基盤研究

大西 康夫 東京大学大学院農学生命科学研究科 教授

Yasuo Ohnishi

牛物系

平成23年2月10日 ~平成.26年3月31日

専門分野 応用微生物学 キーワード

微生物学/発酵生産/遺伝子資源/遺伝子発現 http://park.itc.u-tokyo.ac.ip/hakko/ /微生物酵素/放線菌/二次代謝

WFBページ

研 究 背

発酵・醸造工業をはじめとした微生物利用技術 において、我が国はこれまで世界をリードしてき た。しかしながら、近年、環境に優しい省資源 化技術の1つとして新たな微生物利用技術が世 界中で模索されており、日本の優位性が脅かされ つつある。様々な方面で次世代微生物利用技術 を開発することは我が国の喫緊の課題である。

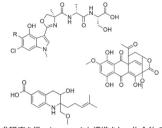
色

本研究では、将来期待される微生物利用技術の うち、「医薬品や高分子原料などの有用物質の 微生物生産しに焦点を絞った。抗生物質などの 多種多様な低分子化合物の生産能に優れた十 壌細菌である放線菌を研究対象とし、 化学合成 プロセスのバイオ化や新規化合物の微生物創 製に資する革新的シーズの創出を目標とする。

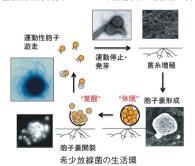
代表論文:Mol. Microbiol., 87(6), 1223-1236, (2013) 受賞:日本学術振興会賞、日本学術振興会(2014年2

新聞:科学新聞「第10回日本学術振興会賞に25氏、細 胞分化制御機構研究を進展・大西康夫 | (2014年1月1 日)

新規生合成酵素を複数取得した


ユニークな部分構造をもつ6種類の化合物につい て、その生合成経路をほぼ明らかにすることができ た。これまで全く知られていなかった反応を触媒す る酵素を多数取得できた。

ゲノム配列より有用酵素を見つけるというアプロー チにより、新規なセスキテルペンを合成する酵素お よび新規な変換反応を触媒できる酸化酵素 (P450) を見出した。


放線菌における新しい遺伝子発現制御シ ステムを複数解明した

ストレプトマイシン生産放線菌において、グローバ ル制御因子AdpAによる制御の全体像を明らかに するとともに、制御tRNAとAdpAからなる制御ルー プ、ECFシグマ因子による主要シグマ因子遺伝子 の制御など、さまざまな遺伝子発現制御システムを 明らかにした。

希少放線菌は生理活性物質の新しい探索源とし て注目されている。運動性胞子を内包した胞子嚢 を作る希少放線菌を対象に、「希少放線菌の分子 生物学しという新領域を切り拓いた。

生合成研究を行ったユニークな構造をもつ化合物の例

応用展開

放線菌が作るユニークな構造をもった化合物 は、医薬品や機能性高分子素材として利用 される可能性を秘めている。また、ユニーク反 応を触媒できる生合成酵素は新規バイオプ 口セスによる化成品製造に利用され得る。本 研究をさらに継続することで、環境調和型社 会の実現に大きく貢献するシーズが得られる ものと期待される。