課題番号: LS063 助成額:159百万円

ライフ・イノベーション

成体肝・膵特異的幹細胞機能維持機構の解明とその破綻 による疾患モデルの開発

京都大学iPS細胞研究所 教授

Yoshiva Kawaguchi

WFBページ

http://www.cira.kvoto-u.ac.ip/i/research/ kawaguchi summary.html

生物・医学系

研

究

色

平成23年2月10日 ~平成.26年3月31日

専門分野 外科学 発生生物学

「病気がなぜ起こるか?」を知るためには、「臓器

がどのように維持されているのか? | の理解が不

可欠である。肝臓・膵臓の維持機構に関する議

論の中、我々は、臓器内で枝分かれした胆管・

膵管構造に幹細胞が存在し、新たな細胞を持続

的に供給していることを示したが、幹細胞機能が

マウスを用いて、①肝臓・膵臓の幹細胞が幹細

胞としての働きを果たす為に必要な仕組みを明ら

かにし、②幹細胞に遺伝子異常を起こすことに

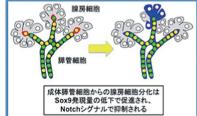
よって疾患モデルマウスを作製・解析し、病気の メカニズムの理解を深め、新たな治療法開発に

代表論文: J. Clin.Invest., 123(5):1881-1886, (2013) ラジオ番組出演: FM 京都「α-Station『第41回 Kyoto

University Academic Talk: iPS細胞と糖尿病治療の可

能性』」(2013年1月16日)

必要な基盤的情報を集積することを目指す。

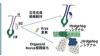

どのように維持されるかは不明であった。

キーワード 実験外科学

成体膵管細胞の可塑性制御機構を解明

我々は成体 Sox9 陽性細胞の系譜解析 (lineage tracing) で肝管/膵管構造内に幹 細胞が存在する事を示した (Nat Genet. 43 (1): 34-41, 2011)。 今回、Notchシグナル の改変とlineage tracingを組み合わせる事 で、Sox9陽性細胞のNotchシグナルがSox9 発現量を制御し、結果的に膵管細胞から腺房 細胞の分化を制御している事を明らかにした。 成体細胞の可塑性の解明は、将来の再生医 療や癌治療に役立つ。

Sox9陽性膵管細胞からの腺房細胞分化制御機構


成体臓器の生理的維持機構や細胞可塑性 の理解は、各論としての生理学、病理学の 進歩だけでなく、「疾患を幹細胞機能の異常 として理解する という新たな概念の確立に

皮膚腫瘍モデルの作製と解析

毛嚢に存在するSox9陽性細胞は皮膚幹細 胞として機能する。Sox9陽性細胞にKras変 異を引き起こすマウスモデルを作製したところ ヒトOrganoid Nevus に極めて類似した皮膚 腫瘍を形成した。前癌病変として位置付けら れるが、これまで病態は不明であったこの疾患 において、Kras変異を起こしたSox9陽性幹 細胞がHedgehogシグナルを介して周囲の皮 脂腺や表皮前駆細胞に異所性 Sox9 発現を 引き起こしている事が分かった。

マウス Organoid Nevus 組織像と病態

応用展開

繋がる。それと同時に、可塑性をうまく引き出 すことによって、新たな組織再生医療の創設 が期待できると考える。