
3-3. 研究概要(補足1) - エネルギー分布の低減 -

- 達成しうる分解能は、波長のばらつき(電子エネルギーのばらつき)で決まる(情報限界)。
- そのため、超高分解能の実現には電子エネルギーのばらつき(=エネルギー分布; ΔE) の影響を低減する必要がある。
- それには、冷陰極電界放出型電子銃において加速電圧を上げること(超高圧化)が有効。

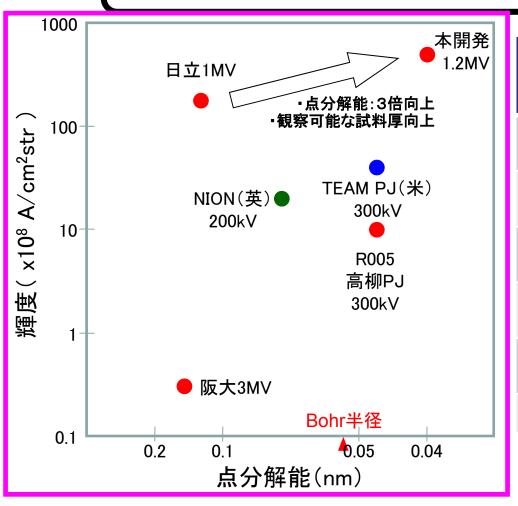
分解能阻害要因(エネルギー分布と振動の影響)のシミュレーション

緑線:1.2MV振動なし ▶ 高加速では300kVと比べてΔE/(加速電圧)が小さいため分解能が向上

赤線:1.2MV振動7pm(試料位置換算) ➤ 振動で分解能が低下するため、低擾乱·高安定化が必要

黒線:300kV(R005類推)振動なし

3-3. 研究概要(補足2) - 低攪乱及び高安定化 -


低擾乱・高安定化仕様の達成に向けた対応

項目		目標仕様	目標達成のための対応		
設置環境	音圧	< 20 dB (>200Hz)	躯体壁面吸音材、防音扉により各室の遮音性能向上(音圧差 50dB)		
	床振動	$< 1.5 \text{x} 10^{-3} \text{ cm/s}^2$	・ 地下7.8mに達するコンクリート基礎の上に高強度コンクリート製電 顕基礎を構築 ・ 電顕基礎形状を従来の1.2倍、円形から角型に変更		
	温度	±0.2 K(8 時間)	 壁厚200mmコンクリート躯体構造と50mmグラスウール断熱防音層による建物断熱性能向上 0.05K以内のレンズ冷却水温度制御 		
電子銃	輝度	5x10 ¹⁰ A/cm ² /sr	・ 極高真空化(真空度二桁向上)による電子源表面の清浄化		
	安定性	±10%(240分)			
電源	高電圧電源	< 0.3 ppm (p-p)	・ 抵抗ケーブルによる交流成分低減		
	対物レンズ電流源	< 0.15 ppm (p-p)	高精度基準抵抗の採用部品選別によるノイズと温度特性向上温度安定化		
試料 ステージ	ドリフト	<0.02nm (1画像取得時)	ステージ支持機構の単純化(片持ち方式)と各詳細部分の堅牢化熱膨張係数の小さい材料の多用		

3-4. 研究概要 - 競合技術との比較(国際的ベンチマーク)-

原子レベルでゲージ場を可視化する世界初の観察装置の開発

- 1)数Åの原子の姿を捉え(世界最高 点分解能 0.040nm)
- 2) 微細な3次元電磁場分布を可視化(世界最高輝度)
- 3)ミクロンオーダの厚い試料、重元素も観察可能

非製品 先端装置	点分 解能 (nm)	輝度 (x10 ⁸ A/cm ² str)	国名
本開発 1.2MV	0.040	500	日本
日立(2000) 1MV	0.12	180	日本
名古屋大 1MV	0.1	未公開	日本
R005 高柳 PJ 300kV	0.047	~10	日本
TEAM PJ 300kV	0.047	~40	米国
阪大 3MV	0.14	~0.3	日本

3-4. 研究概要(補足3) - 目標性能の意義とブレークスルー -

■ 点分解能0.040nmを達成する意義

- 分解能限界への挑戦による要素技術の限界性能見極めとその向上
- 像コントラストの向上(Bohr半径において従来の約2.5倍)による原子種同定精度および位相検出精度の向上
- 磁石磁壁内部(~1nm)の磁場分布と原子を可視化し、希少元素による保磁力強化のメカニズムを解明
- 原子分解能電場計測により充放電プロセスでのLiイオンの挙動を解明し充電時間 の飛躍的短縮に貢献

■ 性能達成に必要な技術的ブレークスルー

• 項目3-3(ページ番号;7,7-2,7-3)参照

■ 世界最高輝度(=世界最高の干渉性)を達成する意義

- 原子レベルの分解能でゲージ場を可視化して新たなサイエンスを拓くには、これまでにない干渉性を実現する必要があり、すなわち輝度の向上が不可欠
- 磁石内粒界の磁性解明など、産業的にもゲージ場の高分解能観察(ローレンツ目標分解能0.2nm)が必要

■ 性能達成に必要な技術的ブレークスルー

- エネルギーばらつきの小さい冷陰極電界放出型電子銃を1.2MVで実現する
- 電子銃の極高真空化により電子放出面を清浄に保持し、高輝度電子放出を維持