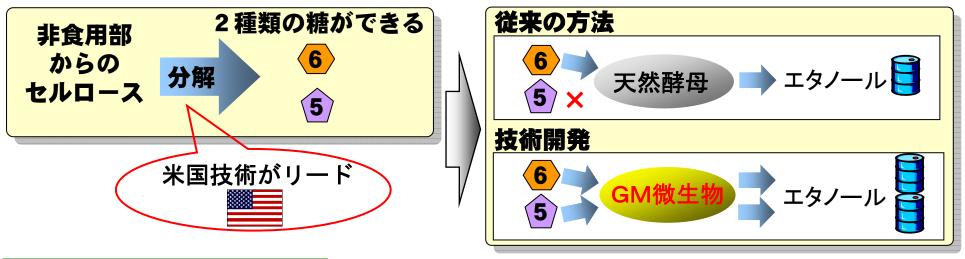

最近の科学技術の動向

脱石油社会の実現に向けたGM微生物の貢献

平成20年5月19日 総合科学技術会議


非食用部を活用したバイオアルコールの生産へ

非食用部からエタノールを生産する技術については開発が必要

GM微生物による非食用部を用いたエタノール生産技術開発

● 技術の課題と解決策

各種GM微生物の比較

		1
KO 1 1 (GM大腸菌)	GMコリネ菌	アーミング酵母 (G M酵母)
酵母が分解しない 5 を発酵	全て発酵	セルロースか ら全て発酵
実用中	数年で 実用化可能	研究段階
「バイオエタノ ール・ジャパン・ 関西」で使用	•	
不可	不可	可能
	(GM大腸菌) 酵母が分解しない 5 を発酵 実用中	(GM大腸菌) GMコリネ園 酵母が分解しない 5 を発酵 全て発酵 実用中 数年で 実用化可能

革新的バイオプロセスによるエタノールの高効率生産

従来発酵技術

菌が増殖しながら発酵

- 一定濃度まで増えると発酵が停止
- 増殖のための余分の糖が必要
- 増殖阻害物質の影響を受ける

● 研究開発の計画

○数年内にも官民協力で年産1005規模の生産実証を予定

まとめと今後の展望

バイオ原料

食用部

草本系

稲わら

麦わら

木質系

G M微生物

コストダウン 生産技術の確立

製品

エタノール

プロパノール ブタノール

化成品 プラスチック

製品・用途の拡大

● 既存の石油化学 インフラが活用可能

脱石油社会の実現

利用可能原料の拡大

- 多収性GM作物の開発
- GM微生物の開発による 未利用バイオ原料の活用

(参考)

日本・アジアにおけるバイオマ ス(稲わら・もみ殻・麦わらなど) 潜在量の試算例

エタノール 年産2.8億キロパ相当 (日本の年間ガソリン消費量約 0.6億キロパの約4倍に相当)

グリーン化学技術

省エネかつ環境に優しい新しい化学工業

革新的技術戦略における革新的技術として推進