
97

7. City OS

7.1 City OS Overview
As the overview of City OS, the

characteristics and structure of City OS are

presented here. Figure 7.1-1 shows the

method to develop City OS in Smart City

Reference Architecture. City OS was

designed, first by consolidating the

necessary characteristics of City OS in view

of the issues in the realization of Smart City

in Japan, and then by consulting the concept

of Smart City in Japan derived from “Society

5.0” and also by referencing Smart City architectures found in other countries.

Figure 7.1-1 Development of City OS in Smart City Reference Architecture

7.1.1 Characteristics of City OS

Figure 7.1-2 shows the characteristics of City OS. There are three issues to consider for

the realization of Smart City in Japan, namely 1) replication and lateral expansion of

services, 2) cross-sectoral utilization of data, and 3) scalability. In reference to 1) many

of the systems so far deployed in various organizations and sectors have been customary

built, and therefore, the services/solutions cannot be easily replicated to other regions.

As regards to 2) from the viewpoint of cross-sectoral data utilization, it is difficult to

develop novel services leveraging information available from multiple sectors because

conventional services and data have been built and exist in a fragmented way within each

sectoral silo. As for 3) scalability, services cannot be easily and continuously improved as

Smart City Reference
Architecture

(City OS)
Issues for the realization of

Smart City in Japan

Overseas Smart City
architecture

Characteristics of
City OS

Develop

DevelopConsolidate

Concept of Smart
City in Japan
(Society 5.0)

Develop

User

Other cities, other systems, etc.

Interoperab
ility

Sm
ar

t C
ity

st

ra
te

gy

Sm
ar

t C
ity

se

rv
ic

e

Sm
ar

t C
ity

as

se
t

C
ity

 O
S

City
management

Smart City
business

Smart City
promotion

organization

Interoperab
ility

Smart City rules

98

it is costly and time-consuming to expand or upgrade services based on the conventional

function-specific systems.

In order to address these issues for the realization of Smart City in Japan, City OS is

designed with such characteristics of as 1) interoperability (connect), 2) data exchange

(flow), and 3) scalability (future-proof).

1）Interoperability (connect) is the mechanism which allows replication of outcomes

and best practices created in a region to another and also allows enables federation

of services within and among regions/communities. It is achieved by implementing

common functions and standard interfaces, together with a mechanism of opening

them to public.

2) Data exchange (flow) is a mechanism to make the flow of data easier within and

across regions by making various data existing in sectoral as well as organizational

silos accessible as if they exist in a shared and logically-configured way. This

necessity calls for a mechanism in which City OS acts as a broker of heterogeneous

data (various forms of data within and outside City OS).

3) Scalability (future-proof) is a mechanism with which City-OS can be continuously

curated and improved, which refers to an easy upgradability and extendibility of its

functions when redefinition of issues or goals of a region takes place or the Smart

City Reference Architecture is updated. For such a purpose, it is necessary to build

the systems consisting of loosely-coupled functions, thereby enabling the upgrade or

expansion only of the necessary components suffices

Figure 7.1-2 Characteristics of City OS

3) Limited of extensibility
System has limited extensibility to enable
continuous improvement of services

2) Active utilization of data between
different fields

Independent data unique to each field causes
difficulty for services across different fields

1) Reusing and horizontal development
of services

Uniquely individualized system causes difficulty
in horizontal development to other regions

Issues for the realization of
Smart City in Japan

3) easy extensibility (sustainable)
Mechanism to ease the extension of City OS
as the utilized functions and architecture get
updated

2) data exchange (flow)
Mechanism to broker and federation various
data within and outside the community

1) Interoperability(connect)
Mechanism to enable service federations
within and between the cities and horizontal
development of the products of each city’s
efforts

Characteristics of City OS

99

 Interoperability (connect)
There are various ways how regions/regions in Japan will collaborate. Accordingly,

as shown in Figure 7.1-3 shows, there should be several options regarding how Smart
City services are federated, namely corresponding to a stand-alone city, cooperating
multiple cities and distributed multiple cities/areas. In any case, interoperability
among City-OS is essential in order to replicate outcomes to other regions.

The interoperability of City OS refers to the situation where APIs and data are
provided in a common format/protocol or through some appropriate machine
conversion so that federation among various Smart City services and with another
City OS can be accomplished.

In order to guarantee interoperability, it is important to implement following two
policies for various functions (API, data) provided by City OS so that systems can be
interconnected and work together when necessary.

1) Actively adopt APIs, data model, etc. defined by standardization bodies

2) Adopt mechanism to make APIs and Data open to public to allow access
by various entities can access

City OS can be used in a common way under any of the inter-regional cooperation
model by implementing functional requirements and standardized specifications listed
in “7.3.2 API and interface provided by City OS”. Each function (API, data) should be
provided in the form of open API and open data (or closed API and closed data
accessible only by authorized personnel). Please refer to “7.3.1.3 Interoperability of
City OS” for details.

100

Figure 7.1-3 Smart City service federation enabled via interoperable City OS

Interoperability in City-OS will lead to three types of outcomes, namely 1) service
federation, 2) cross domain OS federation, and 3) federation of assets/other systems
as shown in Table 7.1-1.

Table 7.1-1 Merits of Interoperability

Reference to

diagram

Merit

1) Service

federation
By defining API provided by City OS, a Smart City service can be

plugged into the City OS of the region, and further can be

replicated to another City OS that is interoperable

2) Cross domain

OS federation
By federating multiple City OS among regions, thereby enabling

exchange of data through interoperable City OS, it will become

possible to provide Smart City services beyond regional

boundaries and enhance citizenʼs convenience also by sharing

data across regions. Furthermore, creation of new local business

or economy is also expected leveraging analysis of region-specific

market characteristics.

Region A

Single city Joint multiple city

Discrete field (discrete system)Smart City field

Data user (local resident/company)
Lo

ca
l s

er
vic

e 1

Lo
ca

l s
er

vic
e 2

Lo
ca

l s
er

vic
e 3

M
ed

ica
l s

er
vic

e 1

M
ed

ica
l s

er
vic

e 2

M
ed

ica
l s

er
vic

e 3

Medical PF

To
ur

ism
 se

rvi
ce

 1

To
ur

ism
 se

rvi
ce

 2

To
ur

ism
 se

rvi
ce

 3

Tourist

Peculiar API
Tourism PF

Peculiar API

Lo
ca

l s
er

vic
e 3

Lo
ca

l s
er

vic
e a

Lo
ca

l s
er

vic
e b

M
ed

ica
l s

er
vic

e 1

Lo
ca

l s
er

vic
e 1

Lo
ca

l s
er

vic
e 2

Lo
ca

l s
er

vic
e 3

City OS
Open API

Open API

City OS
Open API

Open API

City OS
API

Open API

City OS
Open API

Open API
City OS
Open API

Open API
Region A

Re
gio

n 1

Re
gio

n 2

Re
gio

n 3

Re
gio

n 4

Region B Region C

Region A

1) Service federation

3) Other system
federation

Medical
facility/Insurer

2) Cross domain
OS federation

Asset
Device

Asset
Device

Asset
Device Asset

Device
Asset
Device

3) Asset federation

1) Service federation

Multiple cities over dispersed area

1) Service federation

101

3) Federation of

Assets / Other

systems

By sharing various Smart City assets within the region and data

held by other systems via City OS, cross-domain services will be

enabled going beyond the silo walls of organizations and systems.

 Data exchange (flow)
Smart City is required to provide cross-domain Smart City services to resolve issues

breaking the walls separating domains and organizations. In order to realize that, City
OS must be implemented with functions to distribute heterogeneous types of data
(various types of data within and outside City OS). This function to enable exchange of
heterogeneous data is called “data brokering” or “Broker” and needs to support 1)
handling of various types and forms of data, and 2) brokering of data within and outside
City OS.

1) Handling of various types and forms of data

As City OS handles various types of data having different characteristics, it is
necessary to appropriately manage the data related to the issues to be resolved by the
region based on their characteristics.

Table 7.1-2 and Figure 7.1-4 show some examples of data types handled by City OS.

102

Table 7.1-2 Examples of data types

Data type Description

1 Meta data Associated data describing the data model (data items and format)
and attribute information, etc. of the data body, used for efficient
management and search of the data (static data, dynamic data,
personal data, etc.) The classification of data includes context data and
data catalogues. The data body is managed by searching via metadata
and accessing according to the characteristics of each data type.

2 Static data Infrequently updated data stored for an extended period and
referenced. The classification of data includes statistics data, analysis
data, historical data, document data, etc. They should often be made
available as open data, and it is necessary mainly for municipalities to
publish the data they hold as open data in accordance with the rules
for handling them, and make efforts to promote its use.

3 Dynamic
data

Frequently updated chronologically continuous data generated in real-
time. The classification of data includes sensor data, log data, people
flow data, streaming data, etc. As they are generated real-time, it is
necessary to tag them with time stamps, or manage the log, etc.

4 Geospatial
data

Data that contains information identifying the location of a specific
point or area in a space (location information). It may contain
information associated with various events at the location. The
classification of the data includes geospatial information such as
topographical maps, aerial photographs, satellite images, etc., and
BIM (Building Information Modeling) data, CIM (Construction
Information Modeling) data, etc. associated with buildings and civil
engineering structures.

5 Personal
data

In addition to generally-conceived personal data, they also include
those which may not intuitively be classified as personal data, in other
words, a wide range of data regarded to be related to an individual
such as the individualʼs attributes information, logs of movement,
activities, and purchase, the data acquired from wearable devices, or
processed information thereof. The classification of the data includes
special-care required personal information, personal information, and
anonymized information. In compliance with the rules for the handling
of personal data, privacy protection and advanced security measures
are required.

103

Figure 7.1-4 Data types and data broker of City OS

2) Data brokering within and outside City OS

Data broker is required to work on the data both within and outside City OS. The
brokering scheme is classified into two categories, namely for accumulated data and for
distributed data. However, it is possible for users to access data without knowing which.

Table 7.1-3 Classification of data broker methods

Broker method Description

Data

accumulation

method

It registers and accumulates data on City OS and centrally
registers and manages.

Data exchange

method
City OS does not register nor accumulate data but only manages
the location and availability of the distributed data. Utilizing the
location and availability information, City OS brokers the data in
response to the data access request from users.

Data brokering (Broker)

Meta data Static data Dynamic data Geospatial data

Data body

Data user

Data request Data response

Data
registration/
update

Personal data

104

Figure 7.1-5 Data brokering options according to the federation scheme of City OS.

Figure 7.1-5 Examples of data broker by federation method of City OS

Virtualization of real world in the form of city digital twin is an example of the benefit

resulting from the aggregation and utilization of various types of distributed data by way

of these data brokering. City digital twin can be defined as the digital environment which

is comprised of activities and environment information of the city centered around spatial

information of the city and real-time information obtained via IoT, and visualizes the status

of the city in real time in wide range of Smart City service domains such as mobility,

tourism, disaster prevention, infrastructure maintenance and management, environment,

energy, innovation initiatives, etc. to enable advanced information processing in the city

space such as energy, people-flow, simulation of traffic flow, holistic optimization,

prediction making, data-driven decision-making assistance, etc. (Reference: “Appendix D

Trends in digitalization of cities”)

Based on the latest trends in the movement towards city digital twin, its components

of spatial information and activities & environment information of the city can be

categorized as shown in Figure 7.1-6.

City OS

City OS City OS City OS

Asset federation (Centralized)

•Data is centrally controlled by City OS,
data access must be made in
accordance with data classifications
and attributes.

Other system federation
(Distributed)

•Data is stored in other systems. City
OS does not store data but manage the
location of the data.

•Data sharing is possible by brokering
data to other system when accessing
the data.

Cross domain OS federation
(Federated)

•Data is managed as distributed over
multiple City OS, with each managing
the location of the data.

•Data sharing is possible as one logical
data store under federation of all the
City OS.

Other system Other city OSOther system Other city OS

federation
target

Character
istic

Data accumulation method Data exchange method

Data brokering
(Broker)

Data brokering
(Broker)

Data brokering
(Broker)

Asset

User

Asset

Data brokering
(Broker)

Data brokering
(Broker)

105

Figure 7.1-6 City digital twin

 City OS (Activity & environment information of the city)

• Real-time (dynamic data): IoT and social media data with location information,
etc.

• Historical (static data): Data with location and time information added to real-
time data, etc.

• Prediction (static data): Simulated results using data for people flow, traffic flow,
wind/light/sound environment, natural disaster, etc.

 City space systems (Spatial information of the city)

• City/building/infrastructure information model: 3D information model including
the attribute information of city space, building, and infrastructure. CityGML32,
IFC (Industry Foundation Classes)33, etc. are being utilized as data models.

• 3D map data: Reality models based mainly on Digital surface model, Digital
topography model, 3D point group, and 3D geometrical forms.

• Geospatial data: Basic map data, Digital map data, and various geospatial data
in the fields of disaster prevention, weather, facilities, statistics. Data sets
accessible from G-spatial Information Center34 fall into this category.

 Scalability (future-proof)

In Smart City, it is necessary to continually add and update functions in accordance with

the issues to be resolved in the region and the future goals they should aim at. It is thus

necessary implement a mechanism that allows flexible reconfiguration of functionalities,

for instance, by leveraging building-block approach.

32 CityGML https://www.ogc.org/standards/citygml
33 IFC https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
34 G-spatial Information Center https://www.geospatial.jp/gp_front/

106

The building block method is a method to build a loosely-coupled system by selecting

and adopting necessary functions from functional groups. A building block refers to a

group of functions that are integrated to some extent. To enable interoperability in City

OS, it is desirable to construct by way of microservices for which communication between

building blocks are consolidated or published in the form of APIs. As a result, it becomes

possible to make updates in a certain building block with giving minimal impact to other

building blocks and services, and hence improves overall maintainability. Furthermore, it

is possible to start with a small size in the beginning and gradually extend the functions

in view of the issues to be resolved in the region and the future goals they should aim at.

In the future, it is desirable that the addition of federating Smart City services and Smart

City assets, as well as the changes in the various functions provided, can be easily

reconfigured by visual operations.

Furthermore, City OS is expected to maintain transparency by adopting open-source as

much as possible without relying on a particular vendor. Under such circumstances, by

promoting open access to various APIs between building blocks and thereby ensuring

interoperability, it becomes possible for various organizations to participate as an integral

part of City OS, and eventually leads to further development of City OS and the region.

However, with the expansion of City OS as a result of the region growth, new issues may

emerge when the system becomes too complex and starts to look like a black-box. It is

therefore desirable to examine the functional designs and operations in order to ensure

the systems to be easily scalable and also to stay interoperable

Figure 7.1-7 shows an example of construction by building block method.

Figure 7.1-7 An example of construction by building block method

City OS function sets by
various organizations

Authentication

Asset management

Service management

Service federation

External data federation

・・・Settlement

･･･Device Device

Opt-in

Service ･･･

･･･

･･･

･･･

･･･

DataDataData

API

Update/
Extension

API
･･･Data reception Protocol conversion

･･･

107

7.1.2 Determination of components of City OS architecture

With the understanding of characteristics of City OS and general concept of domestic

and overseas Smart City, elements of City OS architecture are derived.

 General concept of Smart City in Japan

City OS architecture is developed in reference to the definitions given in Society 5.0

proposed in the 5th Science and Technology Basic Plan. On the Science and Technology

Policy page of Cabinet Office web site, it is described as follows:

“The society enabled by Society 5.0 overcomes the issues and difficulties of sharing

various knowledge and information by way of connecting all the people and objects via

IoT (Internet of Things) and creating new values as never before.”

“Society 5.0 is realized by the highly integrated system of cyber space (virtual space)

and physical space (real space).”

Based on these statements, definitions of people and objects existing in cyber space

and physical space of Smart City are first considered.

People in Smart City are the people themselves in the region where Smart City activities

are taking place in physical space, and defined as users of Smart City in cyber space.

Objects in Smart City are any and all objects in the region in physical space, and defined

as devices (sensors, mobile devices, etc.) which can act as the sources and recipients of

data in cyber space. In addition, services are defined as the mechanisms for the users to

make use of the data transmitted to and received from the devices in cyber space of

Smart City. These correspond to service providers and other systems in physical space.

Figure 7.1-8 Relationship between physical/cyber spaces and people/objects in Smart

City

People

Physical space Cyber space

People themselves
in the region User

All the objects in
the region Device

Servicers/Other
system Service

Objects

Relationship between physical/cyber spaces and people/objects in Smart City

108

Also, as an activity record of the people in cyber space of Smart City, service usage log

is defined as the information relating to what service is utilized with what device by the

user along with chronological information and location information. City OS is defined as

the framework to manage user/device/service/service usage log in cyber space.

Figure 7.1-9 Definition of City OS

As a next step, City OS, which is the framework to manage user/device/service/service

usage log is decomposed into the following seven architecture components.

 Authentication is defined as the architecture element which manages users by

managing, authenticating, and authorizing user ID.

 Asset management is defined as management of devices which are treated as

assets in Society 5.0 concept.

 External data federation is defined for data transmission to and from assets, which

has to cope with the application of various data transmission technologies both old

and new and the requirement for cross-sectoral data exchange.

 Service management is defined as the element which records the service usage log

as well as manages the services themselves.

Service
usage log

Service

Device

User

Cyber space

Physical space

Servicers/
Other system

All the objects

People
Activity log of
people (does
not exist as
real object)

City OS is defined
as the framework
to manage cyber

space

Definition of City OS in Smart City

109

 Service federation is defined in order to guarantee API connection between services

and City OS.

 Data management is defined for management of all types of data generated by five

elements of authentication, asset management, external data federation, service

management, and service federation, including service usage log.

 In addition to these six architecture components, operation function and security

function which are necessary for ordinary system operations are defined.

Figure 7.1-10 Derivation of City OS architecture components

Determination of City OS architecture elements

Service
usage

log

Service

Device

User

Cyber Space Service management

Service federation

External data federation

Asset management

Authentication

Data management

Operation function

Security function

110

 Relationship between the characteristics of City OS and Smart City
Reference Architecture

Figure 7.1-11 shows the relationship between the characteristics of City OS and Smart

City Reference Architecture. The three characteristics of City OS are reflected as follows:

• Characteristic 1) The points reflected on the architecture from interoperability

(connect) are authentication, service federation & service management functions, and

Smart City asset (external data federation) & asset management functions, which

constitute the basis for Interoperability,.

• Characteristic 2) The points reflected on the architecture from data exchange (flow)

are data management and external data federation functions which enable brokering

of external data.

• Characteristic 3) The points reflected on the architecture from scalability (future-

proof) are the six components mentioned above, together with security and operation

functions in added. The positioning of each element can be put in order by reflecting

the characteristics of City OS onto the corresponding elements of the architecture.

Figure 7.1-11 Relationship between the characteristics of City OS and Smart City

Reference Architecture

3) Easy
extensibility

2) Heterogeneous
data brokering

1) Interoperability

Ideal forms of
City OS

(Characteristics)

Authentication

Data management

Service federation

Service management

Asset management

External data
federation

Security

Operation

• Authentication as the basis inter operation
• Service federation and

management function
• Asset (external data) federation and

management function

Reflecting onto City OS
architecture

Points to be considered in
architecture

• Data management and external data
federation to enable brokering of external
data

• Completeness of functions coverage
• Combinations of functions as needed

111

 Reference points of overseas Smart City architecture

City OS was designed with references to major overseas Smart City architectures. Table

7.1-4 shows the overview and reference points of each architecture. For more details of

each architecture, please refer to “Appendix C Overseas Smart City Architecture”.

112

Table 7.1-4 Reference points of overseas Smart City architecture
Architecture Overview Reference points Related chapter
SynchroniCity35 European IoT pilot project

for Smart City, large scale
initiatives with 20 cities
currently participating.

- Components for the
set functions of City OS
and definitions thereof
- Concept of API and
data model in Minimal
Interoperability
Mechanisms, MIMs
- Authentication-related
API, data
management-related
API
- Functions of
architecture
maintenance
organization

7.2 Description of
City OS functions
7.3 External
federation
9.1.1 Various
initiatives enabling
maintenance and
advancement of
the architecture

FIWARE36 Platform software
developed by FI-PPP for
the purposes of enhancing
competitiveness of Europe
in the next generation
internet technology and
assisting development of
smart applications in the
social and public domains.

- Components of the
functional groups of
City OS and definitions
thereof
- Authentication-related
API, data
management-related
API

7.2 Description of
City OS functions
7.3 External
federation

X-Road37 Platform for secure data
exchange developed by
Estonian Government.

- Functions of
architecture
maintenance
organization

9.1.1 Various
initiatives enabling
maintenance and
advancement of
the architecture

IndiaStack38 Collective designation of
Aadhaar and a set of APIs
(e-KYC, e-Sign, etc.) to
utilize Aadhaar, which was
developed by Indian
Government as the unified
individual identification
number utilizing biometric
authentication technology.

- Authentication of
individuals (Individual
Authentication)

7.2.2
Authentication

IES-City39 Consensus framework
established with the
leadership of NIST
(National Institute of
Standards and
Technology).

- Concept of Pivotal
Points of
Interoperability (PPI)
which distills the critical
technical points for
ensuring
interoperability

7.3 External
federation

35 https://synchronicity-iot.eu/
36 https://www.fiware.org/
37 https://x-road.global/
38 https://www.indiastack.org/
39 https://pages.nist.gov/smartcitiesarchitecture/

113

 Smart City Reference Architecture of City OS

With the understanding of domestic and overseas Smart City concepts and

characteristics of City OS as described above, City OS components of the determined

Smart City Reference Architecture are described below. City OS consists of eight

components which manage the storage of data collected from assets (various devices,

systems, etc. utilized in the region), other systems, and other City OSs, and federations

to services within and outside City OS. Figure 7.1-12 shows the entity relationship

diagram of City OS.

Figure 7.1-12 Entity Relationship Diagram of City OS

Table 7.1-5 shows the definitions of the eight function sets inside the red frame in Figure

7.1-12.

Data
federation

Functions

Data

Smart City Service

Smart City asset

Authentication

Data management

Asset management

Service management

Internet

Internet

Other
city OS

Other
system

Se
cu

rit
y

O
pe

ra
tio

ns

Service federation

External data federation

C
ity

 O
S

Transportation/Mobili ty Energy Disaster prevention Infrastructure maintenance/management Activate tourism and local economy Health/Medical

Improve productiv ity Environment Security Logistics Compact community development Others

114

Table 7.1-5 Function sets overview of City OS
Structure

Layer
Function Set Definitions Reference

Chapter

Function
(Service)

Service
federation

Provide functions and API to federate with various
services operating on City OS. Provide common
services and open API, and have functions of API
management and cross domain OS federation.

7.2.1

Authenticatio
n

Provide appropriate authentication method for
users, services and other City OS. Have functions
of authentication & approval and user
management.

7.2.2

Service
Management

Provide functions to manage Smart City services
on City OS. Have functions of service management
and service usage log management.

7.2.3

Data Data
Management

Provide functions to manage data stored and
accumulated within City OS, and broker data
distributed within and outside the region. Have
functions of data brokering and data management.

7.2.4

Data
Federatio
n

Asset
Management

Provide functions to manage Smart City assets and
other systems federated to City OS, and execute
Smart City asset control. Have functions for device
management and system management.

7.2.5

External Data
federation

Provide functions to manage interface with Smart
City assets or other systems, and absorb any
differences in data formats and protocols. Have
functions of data processing and data
transmission.

7.2.6

Common
Function

Security Provide functions necessary to protect City OS
against the internal and external threats.

7.2.7

Operations Provide system management function and
management process necessary for the operations
of IT systems on City OS.

7.2.8

In particular, with respect to the concept of interface in the conotext of federating City

OS, please refer to “7.3 External federation”.

115

7.2 Descriptions of City OS functions
As shown in Figure 7.2-1, City OS consists of six function groups, namely “service

federation”, “authentication”, “service management”, “data management”, “asset
management”, and “external data federation”, and two additional types of function
groups, “security” and “operation”, which are common to each function group, in total
of eight function group.

Each function group contains function blocks grouping individual functions. These
function blocks and the requirements for individual functions are described in the
following sections. It should be noted that it is necessary that City OS is implemented
with individual functions as a result of the selections of necessary requirements based
on the issues to be resolved in the region and its goals in the future. These
requirements are listed again in “Appendix A Summary of requirements of City OS”
along with the examples of requirements selected based on the classification
examples of City OS use cases.

Figure 7.2-1 Details of City OS in Smart City Reference Architecture

Data
federation

Function

DataCi
ty

OS

Data brokering

Int
er

-C
ity

 O
S

fe
de

ra
tio

n

Service federation
Common service

API management
Authentication

Authentication/Approval

Service management Service usage log
management

Service management

Authenticati
on

Data access

User management

External data federation

Asset management

Data management

Device management System Management

Data processing

Data management
Personal Static/Dy namic

Se
cu

rit
y

Op
er

at
ion･･･

Data transmission Da
ta

fed
er

ati
on

 be
tw

ee
n d

iffe
re

nt
fie

lds

Open API

･･･

116

7.2.1 Service federation

Service federation provides functions to federate various Smart City services, which

operate on City OS, to City OS and other Smart City services. Service federation consists

of “Common service”, “Open API”, “API management, and “Cross domain OS federation”

functional blocks.

 Description of functional blocks for service federation

1) Common service

Common service is a function of City OS to provide services which are used commonly

across regions and domains as the cooperative area. It is often provided via user interface,

and includes, for example, developer portal site for the users of City OS, bidirectional

communication portal site to enable connection between residents and municipalities, etc.

2) Open API

Open API is the interface specifications of APIs provided by City OS that are made public

for external use by other organizations. It is made open to public and enables external

access by working with API management, which includes authentication, and data access,

etc. required for service federation and cross domain OS federation. Open API is

sometimes utilized to federate with Smart City assets and other systems within external

data federation.

3) API management

API management manages and publishes various functions provided by City OS as API.

API management covers not only the API made available for external access but also the

API exclusively used within City OS. It includes API life cycle management for managing

and publishing API, API gateway to control the flow of API, etc.

4) Cross domain OS federation

Cross domain OS federation is a function to federate various functions, data, etc.

belonging to City OS with another City OS. It includes authentication federation which

enables the use of the same credentials information when a user moves to another city,

and data federation to share data between City OSs.

117

 Functional requirement

Table 7.2-1 shows functional requirement for common services.

Table 7.2-1 Functional requirement for common services
No. Individual function Description
1 Developer portal site For City OS users, catalog functions to enable API and data

searches & publishing specifications, and console functions to
enable evaluation of API, etc. must be provided.

2 Bidirectional
communication portal
site

For residents and municipalities, a function must be provided
to enable aggregation, delivery, etc. of region-related services
and information. It should be equipped with a function to
enable bidirectional communication by connecting residents
and municipalities, and residents and Smart City services,
utilized for the resolution of issues and the improvement in
convenience and quality.

3 Personalize In order to present Smart City services meeting the
preferences of residents, a function must be provided to
prioritize the display order of articles reflecting the interest of
individual residents.

4 Contents
management

A function must be provided to enable creation, delivery, etc.
of contents to be published on the portal sites and home pages
provided by municipalities. It should be equipped with a
campaign management function to enable the measurement of
the effects of staged events, mail deliveries, etc.

5 Regional points
management

A function must be provided to enable and manage a point
program service unique to each region aiming at leading and
maintaining residentsʼ participation in the regional issues.

6 Opt-in management A function must be provided for residents to decide by
themselves to designate the permitted extent of the publication
of individual personal data to City OS operators and service
providers.

7 Visualization/analysis
dashboard

A dashboard function must be provided to enable visualization
& analysis of the status of the city utilizing the data within and
outside City OS for the purpose of resolving regional issues by
residents and municipalities.
It should be possible to measure the effects of the measures,
such as the analysis based on the KGI/KPI set in the strategy.

118

As for functional requirement for open API, please refer to “7.3 External federation”. In

particular, “7.3.2.1 Authentication-related API” and “7.3.2.2 Data management-related

API” are necessary for cross domain OS federation.

Table 7.2-2 shows functional requirement for API management.

Table 7.2-2 Functional requirement for API management
No. Individual function Description
1 API lifecycle

management
Manage the lifecycle (register, refer, update, delete) of City OS
API.

2 API gateway Execute API usage restriction, network throughput restriction,
aggregation of multiple APIs, etc.

Table 7.2-3 shows functional requirement for cross domain OS federation.

Table 7.2-3 Functional requirement for cross domain OS federation
No. Individual function Description
1 Authentication

federation
Respond to the authentication request from the user based on
the user authentication information on the other City OS with
federation to the other City OS.
It should be provided as a function to enable cross domain
authentication federation in accordance with the functional
requirement as described in “7.3.2.1 Authentication-related
API”.

2 Data brokering Provide the data of other City OS to users by federating with
other City OS.
It should be noted that this function is equivalent to what is
defined in “7.2.4.1 (1) Data brokering”. Data exchange
between City OSs is enabled by publishing and federating API
in accordance with the functional requirements described in
“7.3.2.2 Data management-related API”.

119

7.2.2 Authentication

Authentication is a set of functions for City OS to provide appropriate authentication
methods for users of City OS, applications and other systems which are federated with
City OS. Authentication consists of “authentication & approval”, and “user
management” functional blocks.

 Description of function blocks for authentication

Authentication & approval

Authentication & approval can be broadly categorized into authentication function and

approval function.

Authentication function is a function to identify who the user of City OS is. Based on the

identification of the user by this function and the confirmation of the usage authority by

the approval function, it is possible to determine which functions of City OS can be used.

The users of City OS are varied and include applications, etc. as well as users. It is

necessary to be able to provide an appropriate authentication method for each of these

cases. In addition, a variety of entities use this authentication function to implement Smart

City services on City OS. This authentication function is required to provide a secure and

easy-to-use interface to external Smart City services.

Approval function is a function which enables user-by-user or role-by-role setup and

determination of usage authority and usage period of the data and services managed by

City OS. It hereby enables prevention of improper data access and service use. For

approval of data access, it enables approval of data disclosure range and access duration.

For approval of service access, it enables approval of usage restrictions and expiration

date of the service.

User management

User management is a function to centrally manage the users of City OS. It hereby

enables the users of City OS to access various applications implemented on City OS by

the same single user information. User management enables management of

authentication information (password, credentials, etc.), attributes information (name,

affiliation, etc.), in association with ID identifying the user, and of ID lifecycle.

120

 Functional requirement for authentication

Table 7.2-4 shows functional requirement for authentication & approval.

Table 7.2-4 Functional requirement for authentication & approval.

No. Individual function Description
1 Authentication Certify legitimacy of the user from eligibility information (user

ID, password, biometric information, etc.) stored under “user
management”, and identify the account.

2 Approval In association with “user management”, permit or restrict the
usage of various functions of City OS and managed data based
on the roles and policies associated with the account.

3 Individual
authentication

In the case of using personal data, securely confirm the identity
by multi-factor authentication (a combination of biometric
authentication and individual number card, etc.)
* There may be cases in which individual authentication is not
implemented on City OS but managed by each respective
service.

4 Single sign-on Enable single sign-on by centralized management of
authentication for multiple services federated to City OS. Once
authenticated, it should be possible for users not having to be
authenticated for each one of the Smart City services federated
to City OS, hence one-stop service is realized.

Table 7.2-5 shows functional requirement for user management.

Table 7.2-5 Functional requirement for user management

No. Individual function Description
1 Account

management
Manage authentication information (password) and attributes
information (name, organization, etc.) in association with a
specific ID identifying the user, and manage ID lifecycle
(register, refer, change, delete).

2 Role management Manage a role that defines the group the user belongs to (user,
administrator, etc.).

3 Policy management Manage the control policies which define the extent and
authority to access City OS, separately from accounts and roles.

121

7.2.3 Service management

Service management is a set of functions which manage and appropriately operate
Smart City services federated with City OS. Service management consists of “service
management” and “service usage log management” functional blocks.

 Description of functional blocks for service management

Service management

Service management is a function to manage and publish services which are federated

with City OS. Service providers can be either City OS operators or service providers.

It also manages the relationship between users and Smart City services, and further

enables the users to change the mode of service usage based on subscription approach.

Service usage log management

Service usage log management is a function to store usersʼ usage status of the Smart

City services federated with City OS. Stored service usage log can be utilized to provide

optimum personalized services in accordance with the interest of individual user assuming

opt-in by the user.

 Functional requirement for service management

Table 7.2-6 shows functional requirement for service management.

Table 7.2-6 Functional requirement for service management

No. Individual function Description
1 Service lifecycle

management
Manage the lifecycle (register, refer, update, delete) of
Smart City services federated with City OS.
A list of services managed by City OS should be published
to users along with “Service federation”.

2 Subscription
management

Manage the status of subscription (start & end of usage,
change setup for usage authorization) for the Smart City
services available for use by users.

122

Table 7.2-7 shows functional requirement for service usage log management.

Table 7.2-7 Functional requirement for service usage log management

No. Individual function Description
1 Usage log

management
Provide a function to store and publish userʼs City OS and
Smart City service usage logs upon userʼs approval.

123

7.2.4 Data management

Data management is a set of functions to enable management of data stored and

accumulated on City OS, and brokering of data distributed across standalone cities, multi-

cities, and other systems. Data management consists of “data brokering” and “data

management” functional blocks.

 Description of functional blocks for data management

Data brokering

Data brokering is a function to broker data access by managing the location information

of data existing within and outside City OS. It provides a function for users to transparently

access the data stored on City OS and the data located in other City OSs and other systems

using a single interface.

Data management

Data management is a function to store and accumulate data collected through service

federation and external data federation irrespective of data categories or data formats.

City OS is required to manage various types of data of different characteristics

(variations, frequency of updates, volume) for each data category. When handling

personal data, in particular, it facilitates tamper-free data storage and transaction

management.

In order to interoperate data between different City OSs, it is necessary to manage data

by global and unique ID. It hereby becomes possible to identify a particular piece of data

out of various data across regions.

124

 Functional requirement for data management

Table 7.2-8 shows functional requirement for data brokering.

Table 7.2-8 Functional requirement for data brokering

No. Individual function Description
1 Data storage Process (register, refer, update, delete) data managed by

City OS by federating with “data management”.
2 Data exchange Broker (register, refer, update, delete) data distributed

across other City OSs and other systems.
3 Event processing Execute real-time processing of the data brokered by City

OS in accordance with the pre-defined policies.
It hereby becomes possible to provide a mechanism to
switch functions dynamically and flexibly between
analysis/conversion/processing of the data distributed
over within and outside City OS and change in access
authorization reflecting the changes in social environment.

Table 7.2-9 shows functional requirement for data management.

Table 7.2-9 Functional requirement for data management

No. Individual function Description
1 Data store In dealing with various data of different characteristics

(diversity, update frequency, volumy), appropriately store
and utilize data necessary for the resolution of the issues
in the region. The data classification includes personal
data, real-time data, etc. It should be possible to manage
logs to chronologically verify such sequential data as real-
time data.

2 Unique ID
management

Manage ID unique to each piece of data on City OS, and
provide a mechanism to enable identification of a particular
piece of data out of various data across regions. It is
recommended to adopt regional domains, etc., as the
unique ID has to be globally unique.

125

7.2.5 Asset management

Asset management is a set of functions which manage data collection, and
registration, deletion, etc. of Smart City assets & other systems to be connected, and
execute control over Smart City assets. Asset management consists of “device
management” and “system management” functional blocks.

 Description of functional blocks for asset management

Device management

Device management is a function to manage and monitor the status of IoT devices, etc.

connected to City OS, so that system administrator can detect connection anomaly and

other problems of devices. This function enables centralized remote management and

monitoring of devices installed across the real world. Also, remote management for

control (actuation), maintenance, etc. of devices are enabled by way of sending control

instructions for reboot, firmware update, etc.

System management

System management is a function to manage information required for interfacing with

other systems such as authentication information, connection information, contract

agreement information, etc. of other systems connected to City OS, and also for systems

administrators to manage data federation status or connection status with other systems.

This function enables management of data collection, brokering and its status with various

systems connected to City OS.

126

 Functional requirement for asset management

Device management

Table 7.2-10 shows functional requirement for device management.

Table 7.2-10 Functional requirement for device management

No. Individual function Description
1 Device lifecycle

registration
Manage the lifecycle (register/refer/update/delete) of
device information (device ID, unique MAC address, etc.)

2 Device status
management

Manage and publish device status (operation status,
equipment information, etc.) for the devices registered

3 Device control
(actuation)

Transmit commands to control devices, such as reboot and
change operations of the devices connected

4 Device monitoring Monitor operational-or-non-operational status of the
devices connected, or failure incidents transmitted by the
system

5 Device authentication Permit access only from those devices registered in
advance

System management

Table 7.2-11 shows functional requirement for system management.

Table 7.2-11 Functional requirement for system management

No. Individual function Description
1 System lifecycle

registration
Manage the lifecycle (register/refer/update/delete) of the
federation information of other systems federated to City
OS. Also, it should be possible to manage authentication
methods and their credentials information, as other
systems often require authentication.

2 System status
management

Manage and publish connection status (operation status,
equipment information, etc.) with other systems, for other
systems registered.

127

7.2.6 External data federation

External data federation is a set of functions which manage the interface between
City OS and Smart City assets as well as other systems, and absorbs the mismatch in
data models and protocols. External data federation consists of “data processing” and
“data transmission” functional blocks. “Data transmission” also includes the concept of
enabling data federation across different domains and regions via what is called
“cross-sectoral data federation (cross-sectoral data federation connector)”.

 Description of functional blocks for external data federation

Data processing

Data processing is a function to absorb mismatch in data models collected from Smart

City assets and other systems, and convert them into standard data models, etc. This

function enables more extensive and generic utilization of the collected data, and realizes

active usage of the data between different domains. For data processing function, there

is no difference in requirements between Smart City assets and other systems.

Data transmission

Data transmission is a function to absorb mismatch in interface protocols. It supports

system connection under multiple interface protocols, and copes with various connection

requests coming from Smart City assets and other systems. By absorbing mismatch of

interface protocols with this function, data can be federated via standard interface in the

upper layer. For data transmission function, requirements for Smart City assets are

different from those for other systems.

In the case of interfacing with Smart City assets, bidirectional communication protocol

is required in order to support transmission of control commands to devices. Also, due to

limitations of hardware resources and communication environment, light-weight

communication method is preferred.

In the case of interfacing with other systems, the target systems are often IT systems

already in existence with a set of custom interfaces. In order to accommodate such

custom interfaces, a mechanism to accept a broad range of interface protocols is required.

Also, it is necessary to have mechanisms to ensure data interoperability with other City

OS (transmission of collected data and data access requests, etc.).

128

Cross-sectoral data federation (cross-sectoral data federation connector)

Currently, when City OS intends to send and receive data to and from various external

systems, highly cumbersome and resorce-consumig labor is needed to check and adjust

interface specifications erery time a new external system is to be federated. This issue

will be resolved by implementing cross-sectoral data federation connector on both City

OS and other systems to be federated. Such a universal framework will easily provide

interoperability and achieve smooth data federation.

Cross-sectoral data federation connector is currently under research and development

projects,40 and this connector is expected to provide functions for distributed data search,

data exchange control, and data exchange log, etc. in the future. In particular with respect

to data exchange log, it is not simply recoding the data exchange logs but expected to

ensure the authenticity in terms of data quality by way of block-chain technology. From

the standpoint of ease of development for external data federation functions, City OS

should also be equipped with a function to interface with cross-sectoral data federation

connector in the future.

Figure 7.2-2 Data federation diagram with other fields via inter-field data federation basic

connectors

 Functional requirement for external data federation

Table 7.2-12 shows functional requirement for data processing.

40 Cross-ministerial Strategic Innovation Promotion Program (SIP) Second Phase / Big-data and AI-enabled
Cyberspace Technologies / Research on the infrastructure to realize data utilization and service provision
overcoming the boundaries of fields and organizations

Co
nn

ec
tor

City (City OS)

Other field a
(example: railways)

Data fedeation via inter-field data federation basic connectors
(City OS federation with a single connector to multiple other fields.)

Co
nn

ec
tor Other field b

(example: disaster &
disaster prevention)

Co
nn

ec
tor

129

Table 7.2-12 Functional requirement for data processing
No. Individual function Description
1 Data conversion Convert externally acquired data into the format that City

OS can handle. Terms to be converted include vocabulary,
format, subject matter, etc. and vary depending on the
data to be handled.

2 Data acceptance
(queuing)

Accept data access (register, refer) to accumulate data on
City OS. Federated target includes Smart City assets, other
systems, etc.

3 Data acquisition
(crawling)

Regularly crawl other systems and acquire data.

4 Data complement Complement missing data in real-time data, etc. and
improve data quality. There are various data complement
methods, it should be possible to prepare complement
method options in order to meet every purpose.

Table 7.2-13 shows functional requirement for data transmission.
Table 7.2-13 Functional requirement for data transmission

No. Individual function Description
1 Protocol conversion In order to interface with Smart City assets and other

systems operated across the region, convert the standard
communication protocols into the communication protocol
that City OS operates with.

2 Cross-sectoral Data
search

Search the data distributed over external City OS based on
the summarized information of data (data catalog).
* To be utilized for cross-sectoral data federation
connectors in the future.

3 Cross-sectoral Data
exchange control

Control extent of data access by checking data usage
authorization based on mutual agreement rules set
between City OS and other systems.
* To be utilized for cross-sectoral data federation
connectors in the future.

4 Cross-sectoral Data
exchange record

Record the data exchange logs mutually federated
between City OS and other systems, in order to improve
data quality through traceability.
* To be utilized for federations to cross-sectoral data
federation connectors in the future.

130

7.2.7 Security

Security is a set of functions to facilitate protection of City OS against threats from
outside City OS and vulnerabilities within City OS.

 Description of functional blocks for security

Security measures of City OS are divided into two main categories of 1) technical

measures, and 2) managemental measures (including personnel security, organizational

security, physical (environmental) security).

Technical measures include authentication, encryption, unauthorized access prevention,

unauthorized access detection and interception technology, etc., and are defined as

required functions to be implemented in City OS.

Managemental measures include such personnel security as education and making rules,

such organizational security as vulnerability management and security audit, and such

physical security as facility access management and vandalism prevention, and are

defined as necessary items for operation and management of City OS.

 Functional requirement for security

As technical measures, City OS incorporates individual functions as shown in Table 7.2-

14.

Table 7.2-14 Functional requirement of technical measures

No. Individual function Description
1 Authentication Provide a function to authorize digital access by way of verifying

whether the access requester is legitimate or not, for users,
Smart City services, other City OS, other systems, IoT devices,
etc. which interfaces with City OS. This function is the same as
what is defined in the following chapters:
- “7.2.2 Authentication”.
Authentication for users, Smart City services, and other City OSes
- “7.2.5 Asset management”
Device authentication for Smart City assets

2 Encryption Apply security encryption appropriate for each confidentiality
level, to the communication by City OS (communication within
City OS and communication with the outside world of City OS)
and the data managed by City OS.

131

No. Individual function Description
3 Unauthorized access

prevention
Provide a function to block unpermitted communication (packets
with unauthorized IP address and port numbers, etc.) for all the
communication by City OS. It is also called a firewall function.

4 Unauthorized access
detection/interception
function

Provide a function to detect and intercept DoS attacks and those
attacks targeting the vulnerability of application layer, etc. which
cannot be dealt with the unauthorized access prevention
function.

Figure 7.2-3 shows the relationship between individual security function and various

functional blocks of City OS.

Figure 7.2-3 Relationship between individual security function and each functional block

of City OS

Security function

Functional block

Authentication Encryption
Unauthorized
access
prevention

Unauthorized
access
detection/
interception

Functions

Service
federation

－
〇

(encrypt
communication)

〇 〇

Authentication
〇

(defined in
authentication)

－ － －

Service
management

－ － － －

Data Data
management

－ 〇
(encrypt data)

－ －

Data
federation

Asset
management

〇
(authentication for

assets)
－ － －

External data
federation

－
〇

(encrypt
communication)

〇 〇

132

As managemental measures, management and operation of City OS is required to

satisfy the requirements shown in Table 7.2-15.

Table 7.2-15 Functional requirements of managemental measures

No. Individual function Description
1 Vulnerability

management
For software which makes up City OS, information relating
to its vulnerability is to be collected and necessary
measures such as application of patches as needed are
executed. Also, vulnerability test is to be conducted for City
OS on a regular basis and countermeasures in accordance
with the result are executed.

2 Log management Acquire logs of communication and processes carried out
by City OS. The acquired logs are to be stored for a
specified duration in order to preserve evidences.

As City OS is implemented as a platform on the cloud, it is also desirable to refer to

“Information Security Program Guideline for Provision of Cloud Services (Version 2)”41

published by Ministry of Internal Affairs and Communication as general information to be

considered, and execute both technical measures and managemental measures.

41 Information Security Program Guideline for Provision of Cloud Services (Version 2)
https://www.soumu.go.jp/main_content/000566969.pdf

133

7.2.8 Operation

Operation is a set of functions to provide system management and management
process required for maintenance and advancement of City OS. The system
management and management process are indispensable for the continuous
advancement of City OS itself after the initial implementation of City OS. Thanks to
them, by further improving the common services and various functions, City OS is
able to accommodate various Smart City services leading to continuous maintenance
and advancement of City OS.

 Description of functional blocks for operation

System management

 It is to cope with the non-functional requirement to maintain and manage City OS in

order for City OS to stably provide various functions without system outage due to

unexpected causes. It includes ensuring availability for prompt detection and recovery of

failures, ensuring system scalability by building loosely coupled systems, etc.

Management process

It specifies processes and rules required for the continuous efforts towards further

advancement of City OS. It includes service transition management in preparation for

going live with Smart City services and City OS, system operation management to ensure

the quality of City OS, etc.

134

 Functional and non-functional requirements for operation

Table 7.2-16 shows functional requirements for system management.

Table 7.2-16 Functional requirements for system management

No. Individual function Description
1 System scalability Provide a mechanism to allow for continual and easy

additions and revision of functions for future in response to
the issues to be resolved in the region and the goals to aim
at in the future. It should be possible to flexibly
accommodate the reconfiguration of functions by building
loosely coupled systems via the likes of building block
method.

2 Availability Provide a mechanism for City OS to continuously operate
robustly without outage in the event of a failure of City OS.
It is important to minimize the impact to users by defining
the service level of City OS, prompt detection and recovery
of failures, implementing redundancy, etc.

Table 7.2-17 shows requirements for management process.

135

Table 7.2-17 Requirements for management process
No. Individual process Description
1 City OS planning and

development
management

Plan and develop extension of various functions of City OS
in accordance with the service expansion due to the growth
of the region, etc. Based on the plan, the implementation
plan for new common services and new functions is
formulated, and the process of defining the requirements,
design, development, test, and transition is managed. It is
desirable to adopt not only the traditional waterfall-style
development but also the agile-style development process
which enables rapid implementation of various functions.

2 Service transition
management

Formulate and manage the plan to prepare and transition
Smart City services and various functions, in the event of
going live with various functions of Smart City services and
City OS.

3 System operation
management

Define management tools and processes for the operation
(change management, configuration management,
incident management, operation service management,
capacity management, etc.) of City OS.

In order to construct the optimal system configuration in response to the requested

service level, “Non-functional Requirement Grade”42 published by IPA/ISEC (Information-

technology Promotion Agency/IT Security Evaluation and Certification) should be used. It

is desirable to define the non-functional requirements of City OS in accordance with the

importance of Smart City services on each City OS, and configure the system meeting

these requirements.

42 Non-functional Requirement Grade https://www.ipa.go.jp/sec/softwareengineering/std/ent03-b.html

136

7.3 External Federation

7.3.1 External federation of City OS and the concept of API

 External federation methods
Figure 7.3-1 shows types of external federation supported by City OS, namely 1)

service federation, 2) cross domain OS federation, and 3) asset /other system

federation. As for federation methods, there are API-based federation and functional

federation. As for Smart City assets and other systems, please refer to “8. Smart City

asset and other systems”.

C
ity

 O
S

D
at

a
fe

de
ra

tio
n

Fu
nc

tio
n

D
at

a

Smart City Service

Smart City Asset

Authentication

Data management

Asset management

Service management

Internet

Internet

Other
City OS

Other
systems

S
ec

ur
ity

O
pe

ra
tio

n

External data federation

Service federation

1

2

3

3

137

No. Federation

method
Description Federation point

1 Service
federation

Publish interfaces and common
services which provide various
functions to Smart City services
operating on City OS.

Define data/communication
method/authentication and API
required for inter-service
federation.

2 Cross domain
OS federation

Federation with Smart City
services and data published by
another City OS.

Define data/communication
method/authentication and API
required for cross domain OS
federation.

3 Asset
federation/
Other system
federation

Collect and broker data for
various Smart City assets and
other systems.

Define data/communication
methods and interfaces
required for federation with
Smart City assets and other
systems.

Figure 7.3-1 Federation points for City OS

In order to enable service federation, cross domain OS federation, and federation
with assets & other systems for City OS, interoperability of API and data is required.
Interoperability of City OS is described here with reference to practices in other
countries.

 Overseaʼs initiatives for interoperability
As examples found in oversea countries, the framework for interoperability of public

authorities in Europe (EIF) and the concept of sharing only the technically critical parts
out of the overall architecture (MIMs, PPI) are described.

European Interoperability Framework (EIF)

The concept of interoperability for public agencies in Europe is proposed as European

Interoperability Framework (EIF)43. Even though it is intended for administrative entities,

its concept provides a good reference for Smart City.

Of particular importance for City OS is “Semantic Interoperability”, specifically the data

models (data, structure, items, etc.) related to data exchange, and “Technical

43 European Interoperability Framework (EIF)
https://ec.europa.eu/isa2/sites/isa/files/eif_brochure_final.pdf

138

Interoperability”, specifically the communication protocols technically necessary for

interfaces.

Figure 7.3-2 European Interoperability Framework (EIF)

Minimal Interoperability Mechanisms (MIMs)

Open & Agile Smart City (OASC), which is an international organization for Smart Cities

originated in Europe, is proposing the concept of minimal interoperability mechanisms

(Minimal Interoperability Mechanisms, MIMs)44.

During Connected Smart City Conference 2020 (1/23, Paris), an annual assembly

conducted by Open & Agile Smart City (OASC), Personal Data Management proposed by

Helsinki and Fair AI proposed by Amsterdam were newly added to MIMs in addition to the

three existing MIMs that were approved and established earlier as shown in Table 7.3-1.

44 https://www.youtube.com/watch?v=Dkq8X0K-iwY

139

Table 7.3-1 Minimal Interoperability Mechanisms, MIMs

MIM Point Description References
Related Standards

&[Baselines]

OASC

Context

Information

Management

MIM

Context Info

Management

API

This API allow to access to

real-time context

information from the

different cities.

Reference Architecture

for IoT-Enabled Smart

Cities[SC-D2.10]

ETSI NGSI-LD

prelim API, OMA

NGSI, ITU-T

SG20ʼ/FG-DPMʼ

OASC Data

Models MIM
Shared Data

Models

Guidelines and catalogue of

common data models in

different verticals to enable

interoperability for

applications and systems

among different cities.

Guidelines for the

definition of OASC

Shared Data Models[SC-

D2.2]

Catalogue of SASC

Shared Data Models for

Smart City domains [SC-

D2.3]

[FIWARE, GSMA,

Schema.org, SAREF,

Synchronicity RZ+

partner data

models]

OASC

Ecosystem

Transactions

Management

MIM

Marketplace

API

It exposes functionalities

such as catalogue

management, ordering

management, revenue

management, Service Level

Agreements (SLA), License

management etc.

Complemented by

marketplaces for hardware

and services.

Basic Data Marketplace

Enablers(SC-D2.4)

TM Forum API

In particular, SynchroniCity, which is formulated based on the concept of minimal

interoperability mechanisms, has set the requirements for primary interfaces known as

interoperability points in the architecture. The interoperability points are the main

interfaces to federate applications and systems of each city to Synchronicity framework,

and consist of APIs relating to provision and use of data between domains/cities, and

specifications and guidelines for common data model.

Table 7.3-2 shows APIs of interoperability points in SynchroniCity45.

45 https://synchronicityiot.docs.apiary.io/

140

Table 7.3-2 APIs in SynchroniCity
No. API Description
1 IoT

Management
Absorb differences in multiple standards and protocols of various
IoT devices, and make them compatible and available to the
SynchroniCity framework.

2 Context Data
Management

As the core of the architecture, manage context information from
various IoT devices and data sources, and provide unified
approaches and interfaces.

3 Data Storage
Management

Provide unified access and data management for wide variety of
data stored in various data storages, and functions related to data
quality assurance (data cleansing, data quality checking tools,
etc.)

4 IoT Data
Marketplace

Implement a system (data trade marketplace) to exchange
various data, and provide such functions as asset cataloging,
order placement, profit/customer/SLA/license management, etc.

5 Security,
Privacy and
Governance

Provide essential security functions such as ID management,
confidentiality, authentication, approval, completeness,
disapproval prevention, access control, etc. by covering all aspects
of security related to data and platform services in the
architecture.

141

Figure 7.3-3 shows an example of common data model46.

Figure 7.3-3 Example of data model standardization in SynchroniCity

Pivotal Points of Interoperability (PPI) 47

The National Institute of Standards and Technology (NIST) in the United States has

called out to various IoT platform stakeholders in order to realize effective and powerful

Smart City solutions, and conducted an international collaborative effort on the

comparative studies of architecture (IES-City Framework) to develop a framework for

building consensus on the characteristics of the architectural as shown in Figure 7.3-4.

46 https://gitlab.com/synchronicity-iot/synchronicity-data-models
47 NIST A Consensus Framework for Smart City Architectures IES-City Framework

https://s3.amazonaws.com/nist-sgcps/smartcityframework/files/ies-city_framework/IES-
CityFramework_Version_1_0_20180930.pdf

Define details of covered data models and descriptions

142

Figure 7.3-4 IES-City Framework48

Through these comparative studies, the concept of Pivotal Pointes of Interoperability

(PPI) and their aggregate, Zones of Concern (ZoC) are formulated. The way of thinking

behind them is that it is not always necessary to match the specifications of the entire

system to ensure interoperability between IoT systems, but to adopt common

technologies in critical areas as deemed appropriate. Examples of PPI include, as shown

in Figure 7.3-5, IPv6 address of the federation section (Southbound Interface) which

acquire data from data sources, REST API of the federation section (Northbound

Interface) which provides data to applications above the data management & federation

layer, etc.

Figure 7.3-5 Pivotal Points of Interoperability49

48 https://s3.amazonaws.com/nist-sgcps/smartcityframework/files/ies-city_framework/IES-

CityFramework_Version_1_0_20180930.pdf P7
49 https://s3.amazonaws.com/nist-sgcps/smartcityframework/files/ies-city_framework/IES-

CityFramework_Version_1_0_20180930.pdf P71

143

 Interoperability of City OS

Based on the concept of interoperability in Europe, it is understood that “Semantic

Interoperability” and “Technical Interoperability” must align themselves with respect to

external federation interoperability of City OS. The components of interoperability and the

relationship between API provided on City OS and data model are defined as shown in

Figure 7.3-6.

Figure 7.3-6 Consideration policies for API on City OS and data model

APIs implemented on City OS are described based on the following policies. For further

details, please refer to “7.3.2 API and interface provided on City OS”.

 API describes functional requirements required for external federation, API

specifications as standard specifications, and requirement categories.

 It is desirable to adopt APIs which conform to standardized specifications set by

standardization groups.

 Data transmitted between City OSs should follow the movement of data model

standardization in the future.

Inter
Operability Component element Options (example)

Semantic

Vocabulary scheme (type,
code, etc.)

•Common vocabulary base
•Data/Catalog vocabulary (DCAT)
•Schema.org, RDFS etc.

Data item
•Government CIO portal
•FIWARE/SynchroniCity
•Open311, GSMA, DATEXⅡ etc.

Data structure
•Schema.org
•NGSI/NGSI-LD
•RDF+OWL etc.

API specification
•OAuth2.0/OpenIDConnect
•NGSI/NGSI-LD
•SPARQL, OData, SQL etc.

API model •REST/RESTful
•GraphQL etc.

Data format •JSON/JSON-LD, XML, CSV
•Database(RDB,NoSQL) etc.

Technical

Communication protocol •HTTP/HTTPS
•MQTT, CoAP etc.

Transport •TCP, UDP

Internet •IP

Network interface •WWAN, LPWAN, WLAN

Federation
specifications utilized in

common for cross domain
OS link, service federation,

asset federation & other
systems federation

API provided on
City OS

Data specifications
standardized for data
transmission across
domains and regions

Data model

144

 APIs are subject to change due to continuous curation/development of the Smart

City reference architecture.

Based on the consideration policies stated above, the implementation policies of City

OS are described below.

Actively adopt API, data model, etc. set by standardization body groups.

City OS is to be implemented with APIs meeting the functional requirements in
accordance with the issues to be resolved and the goals of the region with reference
to APIs provided on City OS. In doing so, interoperability can be easily ensured by
actively adopting API specifications, data models, etc. set by standardization groups.

WebAPI is selected since APIs provided on City OS must be provided in the form
which is easy to use for the users. WebAPI in City OS designates URI and manipulates
resources by way of HTTPS protocol and standard data format based on REST API
model. JSON data format is used for response data for the ease of machine-based
interpretation. As for other technical matters to be considered, please refer to API
Technical Guidebook50 issued by National Strategy Office of Information and
Communication Technology (IT), Cabinet Secretariat.

For data models, recommended data set51 promoted by National Strategy Office of
Information and Communication Technology (IT), Cabinet Secretariat, and a set of
data standards and a code list52 found in common vocabulary ground or Digital
Government Standard Guidelines53 can be utilized. Date/time, address, notation
system for geographic coordinates, PoI (Point of Interest) code, open codes published
by government ministries and agencies, etc. are available as references. These data
models are promoted also by referencing schema.org as the de facto standard on the
web. With respect to the data which cannot be covered by data models already
mentioned, it is possible to refer to schema.org54. Additionally, for geo-space and
infrastructure information, it is also effective to refer to data models presented in the

50 Source: National Strategy Office of Information and Communication Technology (IT), Cabinet Secretariat, API
Technical Guidebook https://cio.go.jp/sites/default/files/uploads/documents/1020_api_tecnical_guidebook.pdf
51 Source: Recommended data set promoted by National Strategy Office of Information and Communication
Technology (IT), Cabinet Secretariat https://cio.go.jp/policy-opendata
52 https://imi.go.jp/goi/common/
53 https://cio.go.jp/guides
54 https://schema.org/

145

data platform55 for land, infrastructure, transport and tourism promoted by Ministry of
Land, Infrastructure, Transport and Tourism.

Open access mechanism to allow access by various organizations

Easy to use environment of API and data model implemented on City OS is
maintained for the users of City OS by publishing them as open API and open data by
way of developers portal, etc. Users of City OS refer to published open API and open
data, and implement external federation using identical format or by way of
mechanical conversion.

（a）Publishing functionalities

- Open API (interface specifications, users guide, etc.)
- Open data (data item, data model such as data structure, etc.)
- Metadata (catalog data, organization/personnel, etc.)
- Terms of service (license, prohibited matter, disclaimer, etc.)

（b）Providing test and evaluation environment

- Developers portal (catalog, console)

- Sample code, library

- Sandbox

（c）Environment for information exchange

- Region

For more details on open access method for API and data model, please refer to API
Implementation Guidebook56 issued by National Strategy Office of Information and
Communication Technology (IT), Cabinet Secretariat.

55 https://www5.cao.go.jp/keizai-shimon/kaigi/special/reform/wg6/20191105/pdf/shiryou2.pdf
56 API Implementation Guidebook issued by National Strategy Office of Information and Communication Technology (IT),

Cabinet Secretariathttps://cio.go.jp/sites/default/files/uploads/documents/1019_api_guidebook.pdf

146

7.3.2 API and interface provided on City OS

 Authentication-related API

Requirements for interface (API)

It is recommended to use OAuth2.057 in conjunction with OpenID Connect58 (request

approval of OAuth based on the specifications of OIDC). Table 7.3-3 defines functional

requirements for use in external federation. In addition, specific examples of

implementations are described in Appendix.

Table 7.3-3 Functional requirements for authentication-related API
No. Individual

function
Description Mandatory

1 Authentication/
approval

Execute validation & issuing and disabling of
access tokens utilizing qualification information
(ID/password, biometric information, etc.) stored
in ID management. Restrict specific usage
capability based on the pre-registered user
authorization.
* Use of OAuth is recommended.

✓

2 Attributes
acquisition

Acquire attributes information of the
authenticated user.
* Use of OpenID Connect is recommended.

✓

3 Personal
authentication

In the case of authentication which requires high
level of security such as the case using personal
data, it is required to provide an authentication
method which confirms the identity by multi-
factor authentication with a combination of
biometric authentication, individual number card,
etc.
The authentication of individuals may not be
implemented on City OS but on each respective
service.

–

57 https://oauth.net/2/
58 https://openid.net/connect/

147

Standard specifications

Standard specifications related to authentication are described.

（a）OAuth（Open Authorization）

An approval framework which allows restricted access to HTTP services by third
party applications. The latest standard is OAuth 2.0 published as RFC in 2012
(RFC6749, RFC6750).

（b）Open ID Connect

A version with an added simple identity layer on OAuth 2.0 protocol.

（c）SAML59（Security Assertion Markup Language）

XML-based standard specifications to enable user authentication and single sign-
on across different internet domains. It was established in 2002 and updated as
version 2.0 in 2005.

59 https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf

148

 Data management-related API

As presented in ”7.1.1.2 Data exchange (flow)”, City OS manages various data of

different characteristics. For external federation of City OS, it is important to facilitate data

management and data access which make the best use of the characteristics of the

managed data.

Requirements for interface (API)

Table 7.3-4 Functional requirements for data access-related API

No. Individual
function

Description

1 Data access Provide APIs to manage data lifecycle (register, refer, update,
delete) incooperation with data management of City OS.

2 Publish/
Subscribe

Provide APIs to transmit a notice of change to notifying parties
in real-time when the changes are made to the data stored on
City OS.
Also provide APIs to manage lifecycle (register, refer, update,
delete) of the notices (conditions, notifying party, etc.).

3 Data brokering Provide APIs to manage lifecycle (register, refer, update, delete)
of the location of distributed data.

4 Personal data
(sensitive
personal
information)
delivery and
acceptance

Provide this function in the case when personal data (sensitive
personal information) is shared with Smart City services and
other City OSs.
It is required to confirm the identity prior to delivering personal
data. As the method for confirmation of identity, multi-factor
authentication with a combination of device authentication,
biometric authentication, individual number card, etc. is to be
used. Also provide functions to restrict the timeframe and the
destination of data delivery. When the data is delivered, the
usage log must be kept.

149

Standard specifications

Standard specifications related to data access are described. Examples of standard
specifications categorized by federation methods and data classifications are shown. The
actual implementation may vary depending on the characteristics of the data managed
by City OS. API specifications and data models adopted by City OS are made available as
metadata for external access, and the users are required to access in accordance with
the data characteristics. Specific examples of implementation by use cases are described
in Appendix.

（a）By federation methods

Common API

City OS

Data storage method Data distribution method

API
specification

API model

Data type

Communicati
on protocol

Dependent on data classifications

REST/RESTful

JSON

HTTP/HTTPS

Inter-City OS federation
(Federated)

Other system federation
(Distributed)

Asset federation
(Centralised)

Service federation
(Centralised)

Common API

Common API

City OS

Common API

Common API

City OS

Common API

Common API

City OS

Common API

●Data access
●Publish/Subscribe

●Data access ●Data access
●Data brokering
●Publish/Subscribe

Common API

Other city
OS

Common API

Other
system

Asset

Service

●Data access
●Data brokering
●Publish/Subscribe

Dependent on assets

REST/RESTful

JSON

HTTP/HTTPS

150

（b）By data classifications

(i) NGSI60/NGSI-LD61

Acronym for Next Generation Service Interfaces. It was standardized by Open
Mobile Alliance with follow-on updates, and the latest version, NGSI-LD (Linked Data)
is published by ETSI (European Telecommunications Standards Institute). Physical
objects in real world are managed by standardized data model as context containing
unique identifiers, attributes, and other related supplemental information. Data
exchange across domains and organizations are promoted via adoptions by FIWARE of
the interface for the query of data location (NGSI-9) and the interface for the query of
the data itself (NGSI-10).

(ii) SPARQL62

Acronym for Protocol and RDF Query Language. One of the query languages
standardized by W3C. It enables designations of such basic query patterns as logical
OR and logical AND, and also other patterns like text string manipulations and filters.

60 NGSI https://www.openmobilealliance.org/release/NGSI/
61 NGSI-LD https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.02_60/gs_CIM009v010202p.pdf
62 SPARQL https://www.w3.org/TR/sparql11-overview/

Personal data
Metadata

Body of data

API specification
(exemplification)

API model

Data type

Communication
protocol

REST/RESTful

JSON

HTTP/HTTPS

* Dependent on data characteristics

NGSI/NGSI-LD
SPARQL

Non-personal data

Dynamic data Static data Geo-space
data

151

(iii) REST/RESTful63

Acronym for Represented state transfer. It is one of the styles of software
architectures for distributed hypermedia systems like a web. It is mainly comprised of
the following four items of design principle.

- Stateless client/server protocol

- A set of “well-defined operations” applicable for all the information (resources)

- “Universal structure” to uniquely identify resources

- “Use of hypermedia” capable of handling both application information and status
transitions

HTTP call interface for Web systems implemented in compliance with the “REST
principles” is sometimes called “RESTful”.

(iv) JSON64

JavaScript Object Notation (JSON) is one of the text-based, light, and non-
language-dependent data description languages. It is a format which is easy to read
and wirte for humans and to generate parse for machines.

(v) HTTP/HTTPS65

Hypertext Transfer Protocol (abbreviation HTTP) is a communication protocol mainly
used when a web browser communicate with web servers. HTTPS is an abbreviation
of Hypertext Transfer Protocol Secure and an HTTP communication over secure
connection provided by SSL/TLS protocols.

63 Representational State Transfer (REST)

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
64 JavaScript Object Notation(JSON) https://tools.ietf.org/html/rfc8259
65 HTTP https://www.w3.org/Protocols/

152

 Service federation interface

Requirements for interface

In service federation, common functions which improve user-friendliness are provided

as user interface and APIs. There are few examples of those which can be described as

standard specifications and they need to be improved in the future.

Table 7.3-5 Functional requirements for service federation API

No. Individual
function

Description

1 Service
federation
(payment
transaction,
etc.)

Provide functions to allow open access to APIs for services on
City OS as APIs on City OS.

2 Regional point
management

Provide functions to execute addition/subtraction/inquiry
processing, etc. of regional points associated with users.

3 Opt-in
management

Manage opt-in/opt-out options for the City OS users to
determine which services are allowed to use the personal user
information. It should be capable of managing the type of
information to be provided. It should be capable of managing
the opt-in/opt-out logs associated with the personal information
transactions.

4 Catalog
management

Execute registration/acquisition/search processing for the
metadata stored in the catalog function (data catalog) of the
developers portal site.
* Reference: Basics for implementation of federation between
data exchange platforms, published by Ministry of Internal
Affairs and Communications.

153

 Interface for federation with assets/other systems

Requirements for interface

For Smart City assets and other systems which City OS federates with, it is necessary

to federate to them by accommodating different data format, interface, communication

method, and communication protocol.

Table 7.3-6 Functional requirements for interfaces for federation with Smart City

assets/other systems
No. Individual

function
Description

1 One-way
communication

Enable data access via common one-way communication
protocol (HTTP/HTTPS).
* For data access, please refer to data access-related API.

2 Bidirectional
communication

Enable data access of and actuation to Smart City assets via
common bidirectional communication protocol (MQTT,
WebSocket, etc.)

3 Network
interface

Network required for federation to Smart City assets varies in
characteristics (communication distance, communication speed,
power consumption, etc.) depending on the issues to be
resolved or specifications of the connected devices. In addition
to wide-area network (WAN) like 4G/5G, etc., low-power and
wide-area network (LPWAN) such as the one used for IoT/M2M
communications like LPWA, etc. should also be utilized.

Standard specifications

Standard specifications for external data federation are described separately for
federating with assets and other systems.

154

Table 7.3-7 Examples of standard specifications utilized in federation with assets /other
systems

Inter-
operability

Component Asset federatoin Other system federation

Semantic

Vocabulary
scheme

(type, code,
etc.)

* Dependent on Smart City

asset

* Dependent on systemData item

Data structure

API
specification

API model REST/RESTful, etc.

Data Format

CSV, JSON, XML, WMS,

Shape File, GeoJSON,

Geographical Survey

Institute tile format,

XLSX(MS-EXCEL),

Fude polygon, NetCDF, etc.

Technical

Communication
protocol

HTTP/HTTPS

MQTT, CoAP, etc.

HTTP/HTTPS, FTP/SFTP,

SMTP(email), PubSub,

PubSubPubPub, XMPP, etc.

Transport TCP, UDP TCP, UDP

Internet IP IP

