平成29年度科学技術イノベーション創造推進委託事業
エネルギー・環境分野における有望技術の技術課題に関する
包括的調査

調査報告書

年 月

株式会社東レリサーチセンター
目 次

I. 業務概要 ... 1
 1. 委託業務の題目 ... 1
 2. 委託業務の内容 ... 1
 2.1 調査目的 ... 1
 2.2 技術調査 ... 1
 2.2.1 調査対象とする技術領域 ... 1
 2.2.2 普及段階にある技術の動向 ... 1
 2.2.3 研究開発段階にある革新的技術の動向 .. 1
 2.2.4 関連する国内外研究開発プロジェクトの比較分析 ... 1
 2.2.5 産業界の課題、アカデミアのソリューション ... 1
 2.2.6 民間企業・大学が交流する学会等の場とその事例 .. 1
 2.3 研究会・ワークショップの運営 ... 2
 2.4 報告書の作成 ... 2

II. 調査結果 ... 3
 1. CO２有効利用技術の全体像 ... 3
 1.1 CO２有効利用技術の全体像 ... 3
 1.2 普及技術 ... 5
 2. CO２を原料とした化学品製造技術の動向 .. 7
 2.1 CO２からの基幹物質の製造 ... 9
 2.2 水素製造技術 ... 9
 3. 注目技術の詳細調査 .. 22
 3.1 CO２を原料としたオレフィン合成プロセスの CO２排出量削減効果の検討 22
 3.2 注目される水素製造技術のボトルネック課題調査 .. 38
 3.2.1 水素製造技術のコスト高要因の分析 ... 38
 3.2.2 C-H 結合分離（メタン熱分解） ... 44
 3.2.3 C-H 結合分離（メタン部分酸化） .. 52
 3.2.4 高温水蒸気電解（固体酸化物型水電解）（HTEL、SOEC） 56
 3.3 革新的技術の研究開発動向調査 .. 69
 3.3.1 CO２を原料としたエタノール合成 .. 69
 3.3.2 革新的反応分離技術の研究開発動向 ... 76
 4. 産業界からの視点、アカデミアへの期待 ... 86
 5. 学会活動 .. 88
 6. 研究会の検討結果 .. 90
I. 業務概要
1. 委託業務の題目
「エネルギー・環境分野における有望技術の技術課題に関する包括的調査」

2. 委託業務の内容
2.1 調査目的
「戦略的イノベーションプログラム（SIP）」および「エネルギー・環境イノベーション戦略（NESTI）」における今後の事業計画に資する報告書を作成することを目的とし、エネルギー・環境技術分野で、特に産学官が積極的に取り組む技術領域にフォーカスした調査を実施した。調査においては、各技術領域においてボトルネックとなっている具体的な技術課題を明らかにするとともに、国内外の研究開発動向を把握することを目的とした。

2.2 技術調査
2.2.1 調査対象とする技術領域
本調査においては、
・二酸化炭素有効利用技術（化学品製造）
・革新的生産プロセス（化学品製造）
の2分野を調査対象とした。

2.2.2 普及段階にある技術の動向
2.2.1 項において選定した2分野について、現時点で普及段階にある技術を特定し、技術動向を調査した。

2.2.3 研究開発段階にある革新的技術の動向
2.2.1 項において選定した2分野について、研究開発段階にある革新的技術の技術動向を詳細に調査した。

2.2.4 関連する国内外研究開発プロジェクトの比較分析
関連するプロジェクト（国家、民間）の情報を収集し、とりまとめた。

2.2.5 産業界の課題、アカデミアのソリューション
調査対象技術分野において、民間企業が抱えている課題、アカデミア側に期待するソリューションについて調査した。

2.2.6 民間企業・大学が交流する学会等の場とその事例
調査対象分野を取り扱う学会・研究会等について調査を行った。

1
2.3 研究会・ワークショップの運営

2.3.1 研究会の開催・運営
研究会（非公開）を6回開催し、調査結果の報告および議論のとりまとめを行った。

Ⅰ 第1回 ボトルネック課題研究会 2017年7月5日（水）
Ⅰ 第2回 ボトルネック課題研究会 2017年8月10日（木）
Ⅰ 第3回 ボトルネック課題研究会 2017年9月7日（木）
Ⅰ 第4回 ボトルネック課題研究会 2017年11月20日（木）
Ⅰ 第5回 ボトルネック課題研究会 2018年1月11日（木）
Ⅰ 第6回 ボトルネック課題研究会 2018年2月28日（水）

2.3.2 ワークショップの開催・運営
公開ワークショップを開催し、調査結果の報告および議論のとりまとめを行った。

開催日時：2018年2月14日
場所：TKP 御茶ノ水カンファレンスセンター
参加者：179名
（参加者内訳）
一般参加者 ：154名
講演者・関係者：25名

2.3.3 議論結果とりまとめ
研究会、およびワークショップでの議論結果を毎回まとめた。

2.4 報告書の作成
上記の技術調査結果および研究会・ワークショップでの議論結果を包括して、調査報告書を作成した。
事務局作成の「CO₂利用に当たってのボトルネック課題及び研究開発の方向性」については、別紙にとりまとめた。
II. 調査結果
1. CO2 有効利用技術の全体像

1.1 CO2 有効利用技術の全体像

CO2 有効利用技術の全体像を整理した。CO2 有効利用技術は、化学的・生物学的変換と直接利用の 2 つのカテゴリーに分けることができる。化学的・生物学的変換はさらに、燃料・化学品への変換、ミネラル化に区分できる。一方、直接利用は、CO2 をそのまま利用するので、製品や石油の生産性向上で利用する技術がある。

表1 CO2有効利用技術の分類

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>分類</th>
<th>CO2有効利用技術</th>
</tr>
</thead>
</table>
| 化学的・生物学的変換 | 燃料・化学品への変換 | 化学的還元（水素化）：合成ガス、メタン、ガス、メタノール等
ポリカーボネートやポリウレタン |
| | サンエル化 | 人工光合成（合成、ガス、メタノール、メタン等） | 電気化学的還元（合成、ガス、メタン等） |
| | 生物による製造：バイオ燃料（微細藻類による生産） | 尿素やメタノールの増産 |
| ミネラル化 | セメント製造 | コンクリート養生 |
| 石油等の生産性向上 | ポーキサイト処理 |
| 石油等の生産性向上 | 炭酸塩化 |
| 直接利用 | 製品等の生産性向上 | 地熱発電の増強 |
| | 超臨界 CO2 の利用 |

各技術の成熟度や市場性については様々な見解がある。これまでに報告されているレポートを参考に、技術の成熟度、経済性、CO2 削減効果の見通しについて表 2 にまとめた。

総じて、直接利用およびミネラル化については、開発ステージが高く実用段階の技術もみられるが、燃料・化学品への変換については、まだ開発ステージが低く研究開発が行われている段階である。
表2 CO₂有効利用技術の成熟度・経済性・CO₂削減効果の見通し

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>分類</th>
<th>技術の成熟度</th>
<th>実用化年</th>
<th>市場性</th>
<th>長期的な需要</th>
<th>ıkключение</th>
<th>削減効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料化</td>
<td>ミネラル化</td>
<td>コンクリート製造</td>
<td>開発段階</td>
<td>☐ ☐ ☐ ☐年</td>
<td>中</td>
<td>高</td>
<td>☐ ☐ ☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ポリカーボネート製造</td>
<td>開発段階</td>
<td>☐ ☐ ☐ ☐年</td>
<td>不明</td>
<td>中</td>
<td>☐ ☐ ☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ボリワレント製造</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>尿素の増産</td>
<td>実用化</td>
<td>☐ ☐ ☐</td>
<td>商業段階</td>
<td>低</td>
<td>中</td>
</tr>
<tr>
<td></td>
<td></td>
<td>メタノールの増産</td>
<td>実用化</td>
<td>☐ ☐ ☐</td>
<td>商業段階</td>
<td>低</td>
<td>中</td>
</tr>
<tr>
<td></td>
<td></td>
<td>セメント製造</td>
<td>開発段階</td>
<td>☐ ☐ ☐ ☐年</td>
<td>不明</td>
<td>中</td>
<td>☐ ☐ ☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート製造</td>
<td>商業段階</td>
<td>高</td>
<td>中</td>
<td>☐ ☐ ☐ ☐</td>
<td>数十一数百年</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ポリカーボネート製造</td>
<td>商業段階</td>
<td>中</td>
<td>中</td>
<td>☐ ☐ ☐ ☐</td>
<td>数十一数百年</td>
</tr>
<tr>
<td></td>
<td></td>
<td>炭酸塩化</td>
<td>☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐</td>
<td>不明</td>
<td>中</td>
<td>☐ ☐ ☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>製品等の生産性向上</td>
<td></td>
<td>-</td>
<td>☐ ☐ ☐ ☐</td>
<td>不明</td>
<td>中</td>
</tr>
<tr>
<td></td>
<td></td>
<td>石油等の生産性向上</td>
<td>実用化</td>
<td>-</td>
<td>商業段階</td>
<td>变動</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>石油等の生産性向上</td>
<td>実用化</td>
<td>-</td>
<td>-</td>
<td>低</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>石油等の生産性向上</td>
<td>実用化</td>
<td>-</td>
<td>中</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

参考資料
4. ECOFYS(2013): Implications of the Reuse of Captured CO₂ for European Climate Action Policies
1.2 普及技術

CO₂ 有効利用技術は、まだ開発途上にあるものが多いためで、石油増進回収（EOR）、CO₂を用いたメタノールや尿素の増産技術が既に実用化している。

1.2.1 CO₂利用石油増進回収（CO₂-EOR）

EOR は、一次回収（自噴やポンプ等による人工採油）および二次回収（水やガスの圧入）後の油田から残存原油をさらに回収するための技術であり、熱攻法、ガス攻法、ケミカル攻法、その他（微生物攻法など）に大別される。ガス攻法のうち CO₂を用いるものが、CO₂-EOR であり、油田の油層に CO₂を送り込み、地下に残っている原油を回収する技術である。圧入された CO₂が残存油に溶け込み、原油の粘性が低下し流動性が向上することで、原油回収率が高まるとされている。圧入した CO₂はそのまま地中に貯留できる。石油増産のみならず CO₂貯留の役割も果たすことから、有効性が高い技術として開発が進められている。

一次回収で回収できる石油は 2〜3 割程度、二次回収でも 3〜4 割程度までとされるが、CO₂-EOR により回収率は 6 割程度近くまで向上する。

CO₂-EOR は米国を中心に商業化されている。天然由来の CO₂を原料とした CO₂-EOR が 1970 年代から実施されてきたが、天然由来 CO₂の供給量にも限界があることから、発電所などからの排出 CO₂の有効活用が検討されるようになった。

JX 石油開発は、2016 年 12 月末に米国テキサス州において CO₂を利用した EOR プロジェクトを開始した。油田の生産量を EOR 実施前の日量 300 バレルから、日量 12,000 バレル（プロジェクト期間平均での見込み）に増加させる計画と発表している。また、本プロジェクトにより、大気中に放出される CO₂を年間約 160 万トン削減させることが可能とし、10月には、CO₂の回収量が累計で 100 万トンに達したことを発表している。

取り出した原油を利用することで CO₂排出にはつながってしまうものの、圧入した CO₂はそのまま地中に貯留できるため、CO₂を利用しない EOR と比べると CO₂排出の程度は小さいと言える。

5 JOGMEC、三菱重工業、東洋エンジニアリング 各社ホームページ
6 下方憲昭 石炭火力発電所の排ガスを利用した原油増産プロジェクト 石油学会 年会・秋季大会講演要旨
7 JX 石油開発株式会社 プレスリリース（2017 年 4 月 17 日、2017 年 10 月 25 日）
1.2.2 メタノールの増産

メタノールは、以下のように、主に天然ガスの水蒸気改質による合成ガスから合成されている。

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow \text{CO} + 3\text{H}_2 \\
\text{CO} + 2\text{H}_2 & \rightarrow \text{CH}_3\text{OH}
\end{align*}
\]

上記のように、水蒸気改質により生成する \(\text{H}_2 \) と \(\text{CO} \) の比は 3:1 であるが、メタノール合成で必要な \(\text{H}_2 \) と \(\text{CO} \) の比は 2:1 であるため、\(\text{H}_2 \) が 1 mol 余る状態となる。そこで、余剰の \(\text{H}_2 \) に見合う量の \(\text{CO}_2 \) を別途プラント内の排ガスから回収して導入し、以下の反応をさせることにより、メタノールの生産量を増大させるプロセスが開発されている。

\[
\text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}
\]

カタールのメタノール製造工場において、三菱重工の \(\text{CO}_2 \) 回収プラント（回収能力：500 トン/日）により回収された \(\text{CO}_2 \) が、メタノールの増産に利用されている。

同様に、尿素の増産プロセスも商業化している。尿素は、主に天然ガスを原料に合成されたアンモニアと、アンモニア合成の際のオフガスの \(\text{CO}_2 \) から合成されている。

\[
2\text{NH}_3 + \text{CO}_2 \rightarrow (\text{NH}_2)_2\text{CO} + \text{H}_2\text{O}
\]

アンモニアとオフガスの \(\text{CO}_2 \) のバランスで \(\text{CO}_2 \) が不足しているため、別途プラント内の排ガスから回収した \(\text{CO}_2 \) を追加で供給することにより、尿素の生産量最大化が可能となる。

8 平田琢也ら、排ガスからの \(\text{CO}_2 \) 回収装置の当社実績と最近の取組み、三菱重工技報、Vol.55 No.1 (2018) 三菱重工業プレスリリース（2012年3月15日発行 第5179号）
2. CO₂を原料とした化学品製造技術の動向

CO₂有効利用技術の全体像を踏まえ、本調査では、①燃料・化学品への変換②に注目し、以降の調査を実施することとした。CO₂を原料として製造することが検討されている化学品とその開発段階について、図1に示す。

図1 CO₂を原料として製造できる化学品
[東レリサーチセンター作成]

ここで、CO₂を原料として製造する化学品で、特に注目すべき化学品は何であるかを検討した。
化学産業においては、図2に示すように、エチレンやプロピレンを合成できれば、ほとんどどのものが合成できる。

9 DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry
10 市川真一郎ら. 将来の化学品原料源の選択と開発すべき技術（特集 非ナフサ原料からの化成品製造技術）、エネルギー・資源，38(3)，p126-130 (2017)
図 2 化学産業のキ－化合物はエチレンとプロピレン
[出所：市川ら，エネルギー・資源，38(3)，p126-130 (2017)10]

したがって、化学産業におけるキ－化合物は、エチレンとプロピレンであるといえる。
さらに、エチレン・プロピレンを製造するためには、下図に示すようにメタノール、エタノール、2-プロパノールが必要となる。このうち、メタノールは CO₂を原料として生産できる化合物である。一方、エタノールや 2-プロパノールは、バイオマスからの製造が期待できる。

図 3 エチレン・プロピレンを製造するための基幹物質
[出所：市川ら，エネルギー・資源，38(3)，p126-130 (2017)10]

CO₂を原料としたメタノール合成方法には、主に、水素を用いて直接合成する方法と、合成ガス経由で合成する方法がある11。したがって、CO₂からまず製造する基幹物質として、メタノールおよび合成ガスが重要であると考える。また、原料水素をどのように製造するかが、CO₂削減およびコストの両面からの最重要課題であるため、水素製造技術についても概要をとりまとめた。

CO₂からの基幹物質の製造および水素製造技術の概要について以下にとりまとめた。

11 このほか、エネルギー・キャリヤー用途を中心として検討されているガスを経由したメタノール合成もある。
2.1 CO₂からの基幹物質の製造
基幹物質別の製造方法と，その技術の概要を表 3 に示す。また，各製造技術についての課題と技術開発の方向性について
図 4〜図 8 にまとめた。

2.2 水素製造技術
現状では，水素は，鉄鋼プラン等からの副生水素が利用されているほか，主にナフサやメタンの水蒸気改質により製造されている。現在，検討されている主な水素製造技術の概要を表 4 に示す。また，各製造技術についての課題と技術開発の方向性について，図 9〜図 11 にまとめた。
表 3 CO₂からの基幹物質の製造技術の概要

<table>
<thead>
<tr>
<th>基幹物質</th>
<th>分類</th>
<th>反応</th>
<th>反応温度</th>
<th>触媒など</th>
<th>技術の概要</th>
<th>ステージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>合成ガス</td>
<td>メタンのCO₂改質 （ドライリモーニング）</td>
<td>CH₄ + CO₂ → CO + H₂</td>
<td>実験</td>
<td>実験</td>
<td>水蒸気に替えて CO₂を用いる改質方法。</td>
<td>実験</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄ + CO₂ → CO + H₂</td>
<td>CO₂ + H₂ = 247 kJ/mol</td>
<td>Ru/MgO</td>
<td>水蒸気改質をドライリモーニングと組み合わせることにより、合成ガスの CO₂と CO₂の比率をほぼ 1 にすることができる（CO₂合成などに都合が良い）。プロセスの合成ガス製造工程はこの方法を用いている。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>逆シフト反応</td>
<td>CH₄ + CO₂ → 2CO + 2H₂</td>
<td>実験</td>
<td>開発中</td>
<td></td>
<td>実験</td>
</tr>
<tr>
<td></td>
<td>メタンの部分酸化 （直接的接触部分酸化： CH₄+O₂ → CO₂+H₂O）</td>
<td>CH₄ + O₂ → CO + H₂</td>
<td>実験</td>
<td>実験</td>
<td></td>
<td>研究</td>
</tr>
<tr>
<td>（現行法 CO₂を原料としていない）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタンの水蒸気改質</td>
<td>CH₄ + CO₂ → CO + H₂</td>
<td>実験</td>
<td></td>
<td></td>
<td>大きな吸熱反応である。合成ガス製造方法として現在主流の製造法である。水蒸気製造に用いられている方法であり、その場合は生成した CO₂に対して水を反応させ（シフト反応）、さらに水素を得る。</td>
<td>実用</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタンの自己熱改質</td>
<td>CH₄ + CO₂ → CO + H₂</td>
<td>実験</td>
<td></td>
<td></td>
<td></td>
<td>実用</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタンの部分酸化 （無触媒部分酸化： CH₄+O₂ → CO₂+H₂O）</td>
<td>CH₄ + O₂ → CO + H₂</td>
<td>実験</td>
<td></td>
<td></td>
<td></td>
<td>実用</td>
</tr>
</tbody>
</table>

基質 CO₂に対する触媒や試薬の必要量が理論的に CO₂の数倍以上である場合、その量を化学量論量という。
<table>
<thead>
<tr>
<th>基幹物質</th>
<th>分類</th>
<th>反応</th>
<th>反応温度</th>
<th>触媒など</th>
<th>技術の概要</th>
<th>ステージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>合成ガス</td>
<td>電気化学的反応</td>
<td>液相（液相）</td>
<td>金属触媒</td>
<td>CO₂ + 2H⁺ + 2e⁻ → CO + H₂O</td>
<td>電流を水などの電解質中に溶解させ、電極を用いて電圧をかけると、電気化学的還元が進行する。還元力の低い水を電解のアシストにより還元剤として用いることができる。電極と電解質の種類により主生成物が異なる。</td>
<td>研究</td>
</tr>
<tr>
<td>光電化学的反応（人工光合成）</td>
<td>半導体（CdS, CdTe, Cu₂S等）</td>
<td>水を還元剤として用い、CO₂を還元する反応。電気化学的還元の電気の役割を光で代替したもの。光のエネルギーを用いて水から引き抜いた電子でCO₂を還元することによりCOを合成する。</td>
<td>研究</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタノール</td>
<td>熱化学的反応（接触水素化）</td>
<td>高温程度</td>
<td>触媒系</td>
<td>二酸化炭素（アイスランド）三井化学にてプラント実績あり、実証</td>
<td>平衡転化率の向上が課題</td>
<td></td>
</tr>
<tr>
<td>液相懸濁層プロセス</td>
<td>高温</td>
<td>触媒</td>
<td>二酸化炭素の生成を伴っている技術。メタノール合成の研究が始まったばかり。</td>
<td>研究</td>
<td></td>
<td></td>
</tr>
<tr>
<td>粉体触媒を用いた水素化</td>
<td>高温</td>
<td>触媒</td>
<td>触媒の存在が、還元剤との複合体を経由してCO₂を還元する反応。</td>
<td>研究</td>
<td></td>
<td></td>
</tr>
<tr>
<td>酵素触媒</td>
<td></td>
<td></td>
<td>触媒</td>
<td>酵素、微生物が失活しない程度</td>
<td>反応メカニズムは未解明。</td>
<td>研究</td>
</tr>
<tr>
<td>エタノール</td>
<td>化学的還元 + 炭素酸化</td>
<td>常温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>炭素 - 酸素結合形成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリマー</td>
<td>炭素 - 酸素結合形成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタン</td>
<td>化学的還元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMC とは、メタンの一部を水素と反応させた化合物で、化学式はCH₂(OH)₂である。DMCの製造は、メタンを酸素と反応させて生成する。DMCは、燃料として使用され、さらにはガスとして使用される。
表 4 水素製造技術の概要

<table>
<thead>
<tr>
<th>原料</th>
<th>分類</th>
<th>反応</th>
<th>反応温度</th>
<th>触媒など</th>
<th>技術の概要・特徴</th>
<th>ステージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタン</td>
<td>水蒸気改質 (シフト反応)</td>
<td>CH₄ + H₂O → CO + 3H₂</td>
<td>700-1000℃</td>
<td>Ni/Al₂O₃</td>
<td>水蒸気改質反応により生成した CO に対してさらに水を反応させ、水素と二酸化炭素を得る。</td>
<td>実用</td>
</tr>
<tr>
<td>熱分解</td>
<td>CH₄</td>
<td>CH₄ + H₂O → CO + 3H₂</td>
<td>室温</td>
<td>反応温度を低下させることができる</td>
<td>研究</td>
<td></td>
</tr>
<tr>
<td>水</td>
<td>水電解 (アルカリ型)</td>
<td>H₂O → H₂ + 1/2O₂</td>
<td>室温</td>
<td>電解質：プロトン交換膜</td>
<td>実用</td>
<td></td>
</tr>
<tr>
<td>水電解 (固体高分子型／図)</td>
<td>H₂O</td>
<td>H₂O → H₂ + 1/2O₂</td>
<td>室温</td>
<td>電解質：セラミック材料</td>
<td>研究</td>
<td></td>
</tr>
<tr>
<td>水電解 (固体酸化物型／高温水蒸気酸化)</td>
<td>H₂O</td>
<td>H₂O → H₂ + 1/2O₂</td>
<td>室温</td>
<td>電解質：セラミック材料</td>
<td>研究</td>
<td></td>
</tr>
<tr>
<td>光触媒を用いた分解</td>
<td>H₂O</td>
<td>H₂O → H₂ + 1/2O₂</td>
<td>常温</td>
<td>半導体光触媒</td>
<td>研究</td>
<td></td>
</tr>
<tr>
<td>原料</td>
<td>分類</td>
<td>反応</td>
<td>反応温度</td>
<td>触媒など</td>
<td>技術の概要・特徴</td>
<td>ステージ</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>熱分解（IIサイクル法）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>研究</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオマスガス化</td>
<td>バイオマスの熱分解ガス化</td>
<td></td>
<td></td>
<td>アルカリ触媒</td>
<td>バイオマスを乾燥（無酸素下で熱分解）させ、水素や二酸化炭素などの乾留ガスを得、水素を分離精製する。</td>
<td>実証</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アンモニアからの製造</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>研究</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物による製造</td>
<td>微生物による発酵生産</td>
<td></td>
<td></td>
<td>嫌気性細菌シアノパクテリア（藻）</td>
<td>特殊条件下で糖質を代謝・発酵し、水素を生産する。シアノパクテリアは、光合成プロセスの一環として水素を生産する。</td>
<td>研究</td>
</tr>
</tbody>
</table>

(以下の情報を元に、東レリサーチセンターが作成)
・エネルギー・資源 2017年5月号「二酸化炭素と水素からのメタノール合成技術（三井化学 村上雅美氏）」
・「二酸化炭素を用いた化学品製造技術・二酸化炭素を用いた化学品製造における触媒技術」S&T 出版（2016）
・二酸化炭素変換に関わる触媒技術の動向 電中研調査報告 V13006（2014年2月）
・合成燃料の現状と今後の動向について（2008年）
・化学産業における二酸化炭素有効利用調査（NEDO/三菱化学テクノ 2010年）
・原子力百科事典 ATOMICA
・NEDO 平成27年度 二酸化炭素原料化基幹化学品製造プロセス技術開発化学品原料として利用可能な水素製造技術に関する検討
・NEDO 水素エネルギー白書 2015
・水素技術の現状と課題 2011
・水素エネルギーシステム Vol.36, No.4 (2011)
・JOGMEC 天然ガスから液体燃料を製造する（GTL技術）
・「アンモニアから水素を簡単に取り出す触媒プロセスを開発」
・JP2010124815A メタノールの生成方法
・WO2012039183A1 アンモニアからの水素の製造方法
・JP2013132248A 光合成細菌の培養方法および光合成細菌
・本調査の2〜6章において収集した情報
■ CO₂によるメタン改質（ドライリフォーミング）

CH₄ + CO₂ → 2CO + 2H₂ ΔH = 247 kJ/mol（吸熱）

主な課題
- 触媒活性の低下
- 反応温度が高い

主な解決の方向性
- 炎素除去の少ない触媒の開発
- 高温で到達するメタノール生成

開発実績
- JOGMEC/GTLプラント（スチームリフォーミング + ドライリフォーミング）
- Linde（ドイツ）：pilot plant（2017年商業化計画）

CO₂とH₂によるメタン改質（バイリフォーミング）
CH₄ + H₂O → CO + 3H₂ ΔH = 206 kJ/mol（吸熱）

■ 逆シフト反応

CO₂ + H₂ → CO + H₂O ΔH = 41.2 kJ/mol（吸熱）

主な課題
- 種類の選択
- 高温での反応率の生成

主な解決の方向性
- メタン副生を抑制する触媒開発（ZnAl₂O₃やZnAl₂O₃など）

■ メタンの部分酸化（触媒法）

CH₄ + 0.5O₂ → 2H₂ + CO ΔH = -35kJ/mol（発熱）

主な課題
- 反応温度の制御
- 触媒の開発（材料、活体、形状等）

主な解決の方向性
- 高圧ガスによる触媒劣化
- 水蒸気反応との組み合わせ

主要研究機関
- ConocoPhilips

■ メタンの水蒸気改質 [現行法]

CH₄ + H₂O → CO + 3H₂ ΔH = 206 kJ/mol（吸熱）

主な課題
- 大型設備が必要

主な解決の方向性
- 能率の小さい触媒開発

図 4 CO₂からの基幹物質製造における課題と技術開発の方向性(1/5)
自己熱改質（ATR: Autothermal reforming）[現行法]

反応	\(\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2 \text{O} \)	\(\Delta H = -802 \text{kJ/mol} \) (発熱)
反応	\(\text{CH}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2 \text{O} \)	\(\Delta H = -206 \text{kJ/mol} \) (吸熱)
反応	\(\text{CH}_4 + 2 \text{CO}_2 \rightarrow 2 \text{CO} + 2 \text{H}_2 \)	\(\Delta H = -247 \text{kJ/mol} \) (吸熱)

触媒：トポソ社

メタンの部分酸化（無触媒）[現行法]

| 反応 | \(\text{CH}_4 + 0.5 \text{O}_2 \rightarrow 2 \text{H}_2 + \text{CO} \) | \(\Delta H = -35 \text{kJ/mol} \) (発熱) |

触媒：マルネジメントによる熱の有効活用

電気化学的反応

| 反応 | \(\text{CO}_2 + 2 \text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2 \text{O} \) (液相) |

触媒：Pt, Ni, Fe, Al, Ga, Ti

光電気化学的反応（人工光合成）

| 反応 | \(\text{CO}_2 + 2 \text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2 \text{O} \) |

触媒：半導体（TiO₂, CdS, ZnO, カーボン系等）、金属触媒

考察

図 5 CO₂からの基幹物質製造における課題と技術開発の方向性(2/5)
図6 CO₂からの基幹物質製造における課題と技術開発の方向性 (3/5)
図 7 CO₂からの基幹物質製造における課題と技術開発の方向性(4/5)
図 8 CO₂からの基幹物質製造における課題と技術開発の方向性 (5/5)
図 9 水素製造技術の課題と技術開発の方向性（1/3）
図10 水素製造技術の課題と技術開発の方向性（2/3）
図 11 水素製造技術の課題と技術開発の方向性 (3/3)
3. 注目技術の詳細調査

以下の技術について詳細調査を実施した。
・CO\(_2\)を原料としたオレフィン合成プロセスのCO\(_2\)排出量削減効果の検討
・注目技術のボトルネック課題調査
 - 水素製造のコスト高要因の分析
 - メタン熱分解による水素製造
 - メタン部分酸化による合成ガス製造
 - 固体酸化物形水素電解による水素製造
・革新的技術の研究開発動向
 - CO\(_2\)を原料としたエタノール合成
 - 革新的反応・分離プロセスを用いた化学品製造

3.1 CO\(_2\)を原料としたオレフィン合成プロセスのCO\(_2\)排出量削減効果の検討

CO\(_2\)を原料とした化学品製造のCO\(_2\)排出削減効果を確認するため、CO\(_2\)を原料として、メタノール経由でエチレンやプロピレンなどの低級オレフィンを製造する場合についての、CO\(_2\)排出量を概算した。

3.1.1 調査対象プロセス

CO\(_2\)を原料とし、メタノール経由でオレフィン 100 万トンを製造するプロセスを対象とした。メタノール合成については、基本技術がある程度開発されている以下の製造方法を取り上げた。

・ CO\(_2\)と水素を原料とした直接メタノール合成
・ CO\(_2\)と水素を原料とした合成ガス経由でのメタノール合成
・メタンを原料とした合成ガス経由でのメタノール合成 [CO\(_2\)有効利用技術ではない]

原料水素の製造方法は、現行法であるメタンの水蒸気改質のほか、固体酸化物型水素電解、メタンの熱分解の 2 つを取り上げた。合成ガスの製造方法としては、メタンのドライリフォーミング (CO\(_2\)改質)、メタンの部分酸化、メタンの水蒸気改質の 3 つを取り上げた。

概算結果は、現行法であるナフサクラッキングによるオレフィン製造と比較した。
具体的な調査対象プロセスは以下である。

表 5 調査対象プロセス

<table>
<thead>
<tr>
<th>オレフィン製造方法</th>
<th>メタノール製造方法</th>
<th>合成ガス製造方法</th>
<th>水素源</th>
<th>プロセス①</th>
</tr>
</thead>
<tbody>
<tr>
<td>ナフサクラッカー</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>比較</td>
</tr>
<tr>
<td>ものメタノールの方法に</td>
<td>合成ガス経由メタノール合成</td>
<td>逆シフト反応による合成ガス製造</td>
<td>人工光合成</td>
<td>参考</td>
</tr>
<tr>
<td>のオレフィン製造</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドライフォーミング</td>
<td>水</td>
<td>メタン部分酸化による合成ガス製造</td>
<td>水蒸気改質</td>
<td></td>
</tr>
<tr>
<td>の水素</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>部分切断</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水素</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 対象範囲

調査範囲: 原料の製造ー製品の製造まで。（製品の消費・燃焼までは含まず）
前提：装置建設時、輸送、副生成物の処理は含まない。
全工程を同じサイトで実施した場合と仮定。
日本の現状のエネルギー原単位を使用。

図 12 対象範囲

≤ 輸送を含まない、という意味でメタンの液化は不要とした。
≤ ナフサクラッキングは輸送を含んでいるが、既存プロセスであり、この輸送は必須のものであるため、このままでよいと考える。検討プロセスは、ガス田付近ですべての合成をする前提で不要とした。
3.1.3 調査方法

（1）手順
調査は以下の手順で実施した。
1) プロセス内に含まれる反応について、エネルギー消費量（電気、熱）を報告している文献情報を収集した。
2) 調査対象プロセスの各反応について、オレフィン 100 万トン製造時に必要な原料の量を算出し、これと 1) で入手したデータより、各反応でのエネルギー消費量を算出した。
3) エネルギー原単位を用いて、各工程の CO2 排出量を算出した。
4) 反応により放出される CO2 や反応で消費する CO2 を加味し、各プロセスの正味の CO2 排出量を算出した。
5) 参照文献において熱マネジメントが十分考慮されていないと考えられるプロセスについては、有識者ヒアリング等を踏まえ、単純算出結果を見なおした。

概算過程においては、有識者よりアドバイスをいただき、考え方、計算方法等を見直し、最適化した。

（2）収集データ
収集データを以下に示す。

表 6 収集データ

<table>
<thead>
<tr>
<th>項目</th>
<th>データ</th>
<th>情報源</th>
</tr>
</thead>
<tbody>
<tr>
<td>既存 CCPP 回収プラントのエネルギー原単位</td>
<td>適用 Owen 万トン/メガワットとした。（参考にしたデータ）</td>
<td>・エネルギー関係技術開発 ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>・「エネルギー関係技術開発ロードマップ」（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省</td>
<td></td>
</tr>
<tr>
<td>天然ガス製造時の CO₂ 排出量（天然ガスの採掘）</td>
<td>適用 Owen 万トン 万トン 万トン 万トンとして。</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>適用 Owen 万トン 万トン 万トン 万トンとして。 （参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
<tr>
<td></td>
<td>（参考にしたデータ）</td>
<td>・エネルギー関係技術開発ロードマップ（平成 00 年 00 月）経済産業省 ・配布資料（公開のあり方に向けた有識者懇談会（第 0 回））</td>
</tr>
</tbody>
</table>

12 東京ガスグループ CSR レポート データ集：環境データ
<table>
<thead>
<tr>
<th>項目</th>
<th>データ</th>
<th>情報源</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気消費に伴う CO₂排出量</td>
<td>0.06 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>環境省 電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成 10年度実績</td>
</tr>
<tr>
<td>蒸気消費に伴う重量あたり CO₂排出量</td>
<td>0.25 kg-CO₂/kWh (0.22 kg-CO₂/MWh)</td>
<td>カーボンフットプリント制度試行事業 CO₂換算量通通原単位データベース 国内データ</td>
</tr>
<tr>
<td>電力消費に伴う CO₂排出量</td>
<td>0.58 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成10年度実績 - 一般社団法人公表</td>
</tr>
<tr>
<td>水素の圧縮動力（常圧 & 200bar）</td>
<td>2.22 kWh/kg H₂</td>
<td>アップル によるシミュレーション結果（ご提供資料）</td>
</tr>
<tr>
<td>水蒸気改質による水素製造</td>
<td>500万トン 1000万トン 1200万トン 水素</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>メタン熱分解（触媒利用か溶融金属利 用かの明記なし）</td>
<td>1.8075MWh/kg CH₄ 35MWh/kg H₂ 200bar 36GJ/kg H₂</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：1000万トン CH₄ 蒸気（気液）：1000万トン CH₄</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>熱：1000万トン CH₄ (原典表記：1000万トン CH₄)</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>アルカリ水電解</td>
<td>電気：50-83 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：50-78 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>データ</th>
<th>情報源</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気消費に伴う CO₂排出量</td>
<td>0.06 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>環境省 電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成 10年度実績</td>
</tr>
<tr>
<td>蒸気消費に伴う重量あたり CO₂排出量</td>
<td>0.25 kg-CO₂/kWh (0.22 kg-CO₂/MWh)</td>
<td>カーボンフットプリント制度試行事業 CO₂換算量通通原単位データベース 国内データ</td>
</tr>
<tr>
<td>電力消費に伴う CO₂排出量</td>
<td>0.58 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成10年度実績 - 一般社団法人公表</td>
</tr>
<tr>
<td>水素の圧縮動力（常圧 & 200bar）</td>
<td>2.22 kWh/kg H₂</td>
<td>アップル によるシミュレーション結果（ご提供資料）</td>
</tr>
<tr>
<td>水蒸気改質による水素製造</td>
<td>500万トン 1000万トン 1200万トン 水素</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>メタン熱分解（触媒利用か溶融金属利 用かの明記なし）</td>
<td>1.8075MWh/kg CH₄ 35MWh/kg H₂ 200bar 36GJ/kg H₂</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：1000万トン CH₄ 蒸気（気液）：1000万トン CH₄</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>熱：1000万トン CH₄ (原典表記：1000万トン CH₄)</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>アルカリ水電解</td>
<td>電気：50-83 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：50-78 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>データ</th>
<th>情報源</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気消費に伴う CO₂排出量</td>
<td>0.06 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>環境省 電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成 10年度実績</td>
</tr>
<tr>
<td>蒸気消費に伴う重量あたり CO₂排出量</td>
<td>0.25 kg-CO₂/kWh (0.22 kg-CO₂/MWh)</td>
<td>カーボンフットプリント制度試行事業 CO₂換算量通通原単位データベース 国内データ</td>
</tr>
<tr>
<td>電力消費に伴う CO₂排出量</td>
<td>0.58 kg-CO₂/kWh (0.58 kg-CO₂/MWh)</td>
<td>電気事業者別排出係数（特定排出者の温室効果ガス排出量算定用） - 平成10年度実績 - 一般社団法人公表</td>
</tr>
<tr>
<td>水素の圧縮動力（常圧 & 200bar）</td>
<td>2.22 kWh/kg H₂</td>
<td>アップル によるシミュレーション結果（ご提供資料）</td>
</tr>
<tr>
<td>水蒸気改質による水素製造</td>
<td>500万トン 1000万トン 1200万トン 水素</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>メタン熱分解（触媒利用か溶融金属利 用かの明記なし）</td>
<td>1.8075MWh/kg CH₄ 35MWh/kg H₂ 200bar 36GJ/kg H₂</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：1000万トン CH₄ 蒸気（気液）：1000万トン CH₄</td>
<td>オレフィン 1000万トン生産の場合に必要な水素量を算出し（1000万トン）、文献中 オレフィン由来が関連する部分のエネルギー消費量を得て、算出。</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>熱：1000万トン CH₄ (原典表記：1000万トン CH₄)</td>
<td>レファレンス 31MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂ 11.5MWh/kg H₂</td>
</tr>
<tr>
<td>アルカリ水電解</td>
<td>電気：50-83 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
<tr>
<td>ポード水電解</td>
<td>電気：50-78 MWh/kg H₂ CSIRO 2016</td>
<td>負極面積 1000万トン CH₄ 1000万トン CH₄</td>
</tr>
<tr>
<td>項目</td>
<td>データ</td>
<td>情報源</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>メタン部分酸化</td>
<td>電気：12万 kWh（メタンの圧縮に要するエネルギー） 14万 kWh（空気の圧縮に要するエネルギー）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>これ以降の電力消費については全体の5%以下であったため、今回の概算では無視した。</td>
<td></td>
</tr>
<tr>
<td>合成ガス → メタノール</td>
<td>電気：13万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気：13万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気：13万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>蒸気：12万 kWh（メタノール→オレフィン） 電気：12万 kWh（メタノール→オレフィン）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気：12万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気：12万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気：12万 kWh（オレフィン100万t膜算時に必要なメタノール100万tとして、文献値より算出）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱（蒸気）：100万tメタノール</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CO + 2H2 → CH3OH
 - H= -90.6 kJ/mol

- CO2 + H2 → CH3OH
 - H= -90.6 kJ/mol

- CO2 + H2O → CH3OH
 - H= -90.6 kJ/mol

- MTO → 3.825kg-steam/kg-MTO
 - 0.0931kWh/kg-MTO

- H2 + CO2 → CO + H2O
 - 1.29GJ/MW
 - 0.61MWh/MW
<table>
<thead>
<tr>
<th>項目</th>
<th>データ</th>
<th>情報源</th>
</tr>
</thead>
<tbody>
<tr>
<td>エチレンプロピレン製造 の排出原単位</td>
<td>ダイアモンドエチレン（プロピレン）</td>
<td>カーボンフットプリント制度試行事業 - CO₂換算量共通原単位データベース 国内データ</td>
</tr>
<tr>
<td>範囲：原油採取→先進→ 熱分解、ナフサ分解による 製造プロセスのモデル化。 輸送工程を含む。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 熱マネジメントの考慮

本調査では、さまざまな文献から得た数値を組み合わせて概算している。プロセス全体を一括でシミュレーションしたデータもあれば、個別の反応のデータを合算したプロセスもあり、単純には比較できない。特に、後者においてはプロセス内での熱マネジメントが十分考慮されていないと考えられるため、この点を追加検討し、概算に反映させた。

・水蒸気改質を含むプロセス：スチームでは加熱できない高温領域での反応になるため、 加熱炉（改質炉）を要するプロセスである。加熱炉の排ガスから廃熱回収してメタノール合成プロセスで必要なスチームを発生できるためメタノール合成で消費するコンプレッサ動力分の電力消費を全て減らすと想定した（情報源での試算では考慮されていなかった。情報源中の記載に基づき、該当分を減じた）。

・メタン部分酸化反応を含むプロセス：部分酸化反応の熱を利用して、メタノール合成のコンプレッサ動力分の電力消費を全て減らすと想定した。

・SOEC 水電解を含むプロセス：水電解後の水素と酸素から熱回収して生成したスチームを水電解用のスチームにリサイクルすることで、この部分のスチーム使用量をある程度減らせる可能性がある。どの程度低減できるかは明確でないため、1/2程度と仮定した。

・今回の概算では比較しにくいが、合成ガス経由のメタノール合成と、CO₂からの直接 メタノール合成では、後者の方が CO₂排出を減らすと予測されている。

(4) 計算結果

計算シートを次ページに示す。
CO₃⁺ → CO₂⁺の水素指向系のソーラー・水素サイクル

<table>
<thead>
<tr>
<th>反応式</th>
<th>原料</th>
<th>生成物</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ → H₂ + 1.5 CO₂</td>
<td>CO₂-emitting</td>
<td>NH₃-water</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
</tr>
<tr>
<td>H₂ + CO₂ → CO + H₂O (H₂O-emitting)</td>
<td>H₂-emitting</td>
<td>CO₂-emitting</td>
<td>54.7 kWh</td>
<td>54.7 kWh</td>
<td>54.7 kWh</td>
</tr>
<tr>
<td>CO + 2H₂ → CH₄ (H₂-emitting)</td>
<td>CH₄-emitting</td>
<td>CO-emitting</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
</tr>
<tr>
<td>CH₄ + H₂O → CO + 3H₂ (CO-emitting)</td>
<td>CO₂-emitting</td>
<td>CH₄-emitting</td>
<td>37.0 kWh</td>
<td>37.0 kWh</td>
<td>37.0 kWh</td>
</tr>
</tbody>
</table>

CO₂⁺ → CO₂⁺の直接分解系のソーラー・水素サイクル

<table>
<thead>
<tr>
<th>反応式</th>
<th>原料</th>
<th>生成物</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ + 4.5 CO₂ → 5 CO₂⁺</td>
<td>CO₂-emitting</td>
<td>CH₄-water</td>
<td>214.4 kWh</td>
<td>214.4 kWh</td>
<td>214.4 kWh</td>
</tr>
<tr>
<td>CO₂⁺ + 3.5 H₂O → 2 CO₂⁺ + 5 H₂</td>
<td>H₂-emitting</td>
<td>CO₂⁺-emitting</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
</tr>
<tr>
<td>CO₂⁺ + 3 H₂ → 2 CO₂⁺ + 3 H₂</td>
<td>H₂-emitting</td>
<td>CO₂⁺-emitting</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
</tr>
</tbody>
</table>

CO₂⁺ → CO₂⁺の合成ガス系のソーラー・水素サイクル

<table>
<thead>
<tr>
<th>反応式</th>
<th>原料</th>
<th>生成物</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
<th>エネルギー消費量 (単位: kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ + 4.5 CO₂ → 5 CO₂⁺</td>
<td>CO₂-emitting</td>
<td>CH₄-water</td>
<td>214.4 kWh</td>
<td>214.4 kWh</td>
<td>214.4 kWh</td>
</tr>
<tr>
<td>CO₂⁺ + 3.5 H₂O → 2 CO₂⁺ + 5 H₂</td>
<td>H₂-emitting</td>
<td>CO₂⁺-emitting</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
<td>118.7 kWh</td>
</tr>
<tr>
<td>CO₂⁺ + 3 H₂ → 2 CO₂⁺ + 3 H₂</td>
<td>H₂-emitting</td>
<td>CO₂⁺-emitting</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
<td>67.7 kWh</td>
</tr>
<tr>
<td>プロセスNo.</td>
<td>原料</td>
<td>使用量</td>
<td>1エネルギー消費 (排出ガス量)</td>
<td>2エネルギー消費 (排出ガス量)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C、H、O、N、S</td>
<td>35t</td>
<td>21,417,114</td>
<td>12,729,114</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C、H、O、N、S</td>
<td>45t</td>
<td>32,147,114</td>
<td>18,729,114</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C、H、O、N、S</td>
<td>50t</td>
<td>36,147,114</td>
<td>21,729,114</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C、H、O、N、S</td>
<td>60t</td>
<td>42,147,114</td>
<td>27,729,114</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C、H、O、N、S</td>
<td>70t</td>
<td>48,147,114</td>
<td>33,729,114</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C、H、O、N、S</td>
<td>80t</td>
<td>54,147,114</td>
<td>39,729,114</td>
<td></td>
</tr>
</tbody>
</table>

注: テーブルの詳細は上記表内に記載されています。
3.1.4 概算結果
本調査では、さまざまな文献から得た数値を組み合わせて概算している（同一条件での文献がそろわなかったため）。プロセス全体を一括でシミュレーションしたデータもある。個別の反応の合算で算出しているプロセスもある。具体的には、プロセス A、B は一括シミュレーションのデータを使用し、C はメタノールまでの一括シミュレーションデータと個別計算の合算で、D、E、F、G は反応各の個別計算の合算となっている。したがって、単純比較は難しい。

図 13 に概算結果のグラフを示す。
グラフ中、ゼロのラインから上方に伸びているグラフは排出される CO₂ 量、下方に伸びているグラフ（緑）は固定される CO₂ 量を表しており、黄色のマーカーでプロットされている値が、正味の排出量（排出される CO₂ - 固定される CO₂）である。

調査対象としたプロセスのうち、正味の排出量がナフサクラッカーを下回るプロセスは、メタン熱分解水素を用いる 2 つのプロセスのみであった。
合成ガス経由のメタノール合成と、CO₂ からの直接メタノール合成では、後者の方が CO₂ 排出を減らせるのではないかと考えられているが（F < A、E < B）。前述のように A と B で一括シミュレーションデータを用いているために、概算結果は F と E の方が排出量は若干多い結果となっている。

各プロセスにおいて、エネルギー消費が多い工程を確認したところ表 7 のようであった。すなわち、コンプレッサおよび高温反応(1,000 dó 前後)のための電力消費による CO₂ 排出が非常に大きいことが明らかとなった。
図 13 概算結果（現状）
<table>
<thead>
<tr>
<th>プロセス</th>
<th>メタノール製造方法</th>
<th>合成ガス製造方法</th>
<th>水素源</th>
<th>CO₂排出が多い工程熱マネジメント考慮前の文献値</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>逆シフト反応による合成ガス製造</td>
<td>水電解</td>
<td>主に高圧水蒸気を作るための蒸気消費による排出：1000万トン。</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>合成ガス経由</td>
<td>メタン熱分解</td>
<td>水素圧縮による電力消費による排出：1000万トン。その他、水素製造工程の電力消費により1000万トン排出しており、かなりの部分をアーケ炉が占めると思われる。</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>トライリフォーミング</td>
<td>合成ガス圧縮工程での電力消費による排出：1000万トン。メタノール分解精製工程での蒸気消費による排出：1000万トン。メタノール合成プロセスで使用する蒸気は回収蒸気を利用。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>メタン部分酸化による合成ガス製造（注）</td>
<td>-</td>
<td>合成ガス・メタノールでのコンプレッサの電力消費による排出：1000万トン。コンプレッサ動力による排出は100万トンだが、エキスパンダーで10万トン相当が回収されている。部分酸化反応でのコンプレッサ：10万トン</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>メタン熱分解</td>
<td>水素圧縮による電力消費：1000万トン。その他、水素製造工程の電力消費により1000万トン排出しており、かなりの部分をアーケ炉が占めると思われる。</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>水電解</td>
<td>主に高圧水蒸気を作るための蒸気消費による排出：1000万トン。</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>水蒸気改質</td>
<td>水蒸気改質シフト反応のリアクターでの電力消費：1000万トン。ヒーターでの電力消費：100万トン</td>
<td></td>
</tr>
</tbody>
</table>
図１４は、反応工程別に CO₂排出量を示したグラフである。
水素製造時の CO₂排出量（水色部分）が大きい。水電解を伴うプロセスは、投入電気量が大きいことに起因する CO₂排出が多い。水蒸気改質で水素製造する場合は、高温反応であることに加え、反応自体が CO₂を放出することから CO₂排出量が多い。

図１４ 概算結果（反応工程別）
また、将来的にどの程度の再生可能電力の導入があれば、各プロセスについて CO₂削減効果が見いだせるか、という観点で以下のグラフを作成した。

水電解での投入電力が全て再生可能電力となれば、プロセス A も F も CO₂排出量が非常に小さくなる。逆に言えば、水電解は再生可能電力の使用を前提としない限り、CO₂削減の観点からは難しいと考えられる。

図 15 概算結果（再生可能電力を想定）
3.1.5
3.1.6 考察
（1）技術課題
CO₂排出量の概算結果より、CO₂を原料とした化学品製造プロセスにおいては、以下の技術開発が重要と考えられる。

1. 反応温度の低温化
・反応温度を低下させる触媒の開発。
 - 目安となる温度のライン：600℃（鉄が使えるようになる）
 - [エンジニアリング会社 A]
 - 550℃以下（触媒の耐熱性がラクになる）[有識者]
 - 400℃（カーボンスチールの強度の限界）
 - [エンジニアリング会社 B]
 - 低温では反応速度が下がるため、反応器を大型にする必要など出てくる。

2. コンプレッサによる電力消費を低減する
・加圧状態の水素製造（加圧水電解）
 →開発事例もあるが、爆発の危険性があるとの指摘もあり。
・低圧でのメタノール合成、低温でのメタノール合成
 →低圧では平衡転化率が低くなるため、
 - 生成物を連続分離するなどして、反応平衡をずらす（反応開始時に戻す）
 - 低温でのメタノール合成触媒の開発
 - プラズマ利用など

3. 再生可能電力の使用
・消費電力の何割を置き換えるか CO₂削減に貢献する技術になるかの検討

4. 個別プロセスについて
・メタン熱分解による水素製造は、CO₂排出量の観点からは有利。固体炭素をどう処理するかが大きな課題。
・部分酸化はドライリフォーミングとの組合せが有望との意見あり。
・水蒸気改質も 200℃のプロセスなどが開発されており、注目との意見あり。
・メタノールを経由せず CO₂あるいは合成ガスから直接オレフィンを合成する技術に注目との意見あり。
（2）有望技術の概要

有望技術：ドライリフォーミング+部分酸化

富山大学の堀教授らは、メタンドライリフォーミング（吸熱反応）と部分酸化（発熱反応）を組み合わせ、効率的に合成ガスを製造するプロセスを開発している。新規モノリス SiC-Ni系触媒（Ni-Al2O3-SiC）を開発することにより、外部熱不要な自己改質方式で合成ガスの高速合成を達成した。触媒開発の際、大きな課題である炭素析出問題と触媒金属の凝集を解決し、触媒の失活問題を克服した。

低温での水蒸気改質

早稲田大学の関根教授らの研究である。本研究グループは以前から、弱い電場中で触媒反応を行うことで、前述のメタン水蒸気改質のような高温を必要としてきた反応が、150℃～200℃ といった低い温度でも充分に速い速度で進行し得ることを見出している。この際に、低温側では熱力学的な平衡状態をも上回っており、この電場中での触媒反応が非平衡な反応系であるということが想像できた。しかしながら、なぜ電場を印加すると低温で十分な速度が得られるのか、またなぜ非平衡となりうるのかは、これまでの教科書的知見では全く説明がつかない現象であった。

これを、電場の中で反応中の触媒の状態を観察することで、新しい触媒反応メカニズムの立証に成功した。

- 触媒（Pd/CoO2）に外部から弱電場をかけることにより、150℃程度という低温で水蒸気改質反応が進む。電場中での水蒸気改質（Electreforming）と呼ばれている。
- 触媒層の上下に電極を設置して印加。
- 電場の中で反応中の触媒の状態を観察した結果、触媒表面に吸着した水を介して、プロトン（H⁺）が速やかに動き、プロトンの表面ホッピングが低温でも反応を促進していること、また、このプロトンと吸着分子との衝突が不可逆過程を生み出していることを見いだした。

13 Wei, Q. et al. Designing a novel Ni–Al2O3–SiC catalyst with a stereo structure for the combined methane conversion process to effectively produce syngas, Catalysis Today, 265(1), p.36-44 (2016)
14 Manabe, R. et al. Surface Protons Promotes Catalysis, Scientific Reports, 6, Article number: 38007 (2016)
合成ガスからの直接オレフィン合成の研究事例

Feng Jiaoらの研究 15:

- 二官能性触媒（ZnCrOx/mesoporous SAPO zeolite）により、合成ガスから軽質オレフィンへの直接変換に成功。
- CO換算でC2-C4選択率は94%、C2=C4収率は80%に達した。
- メタンの生成は2%で、110時間にわたって明らかな触媒の失活はない。

Liangshu Zhongらの研究 16:

- 炭化コバルト四角形ナノプリズムを触媒に用い、穏和な条件（250℃、1bar）で合成ガスから軽質オレフィンへの直接変換に成功。
- オレフィンの選択率はC換算で60.8%と高く、メタンの生成は5%。
- 600時間にわたって、明らかな触媒の失活はない。

Zelong Liらの研究 17:

- ZnO-ZrO2固溶体とZn修飾SAPO-34ゼオライトを用いて製造したZnZrO / SAPOタンドム触媒により、CO2から低級オレフィンの選択的合成に成功。炭化水素中の低級オレフィンの割合は80-90%。
- タンドム触媒が有する2つの機能、すなわち ZnO-ZrO2固溶体での CO2の水素化、SAPOゼオライトでの低級オレフィンの生成に実現するもの。
- 本触媒は熱的および硫黄的処理に対して安定であることから、産業利用が期待できる。

3.2 注目される水素製造技術のボトルネック課題調査
水素製造技術に関して、以下の4テーマを取り上げ、詳細調査を実施した。
・水素製造技術のコスト高要因の分析
・C-H 結合分解（メタン熱分解）
・C-H 結合分解（メタン部分酸化）
・SOEC 水電解

3.2.1 水素製造技術のコスト高要因の分析
水素製造コストの中でコスト高の要因となっている部分を明らかにすることを目的に、
水素製造コストをさらにブレークダウンして分析している文献を収集し、内容を確認した。
その結果、各水素製造技術におけるコスト高要因はそれぞれ以下であり、いずれの
製造方法においても電力コストと燃料コストの影響がコスト高の主要因であった。

表 8 水素製造技術のコスト高要因

<table>
<thead>
<tr>
<th>水素製造技術</th>
<th>コスト高要因</th>
</tr>
</thead>
</table>
| 固体酸化物型水電解 (SMR) | 電力コスト
装置コスト、運用コストは技術の発展で低減可能（スタック寿命を延ばす、
熱マネジメントにより電力以外の投入エネルギーを低減、等）
特殊な材料（腐食環境において高温でも安定）のコスト |
| メタンの熱分解 | 電力コスト
燃料コスト
副生する「固体炭素」の有効利用によるコスト回収効果が低い |
| メタンの部分酸化 | 燃料コスト
酸素コスト |
| メタンの
水蒸気改質
自己熱改質
二酸化炭素改質 | 設備コスト（SMR）
燃料コスト（ATR）
酸素コスト（DRM）
装置コスト及び運用コスト（ATR） |

水素製造コストを詳細にブレークダウンして分析しているレポートを中心に、以下に
紹介する。
（1）水素製造のコスト構造分析事例 水電解（PEM、SOEC）

米国 DOE のレポート“Final Report: Hydrogen Production Pathways Cost Analysis (2013-2016) DOE Strategic Analysis 6231-1”においては、水電解（PEM および SOEC）による水素製造コストを分析している。それぞれの水素製造コストとその内訳は図 16 のようであった。

図 16 PEM および SOEC による水素製造コストの内訳
[DOE レポート 18より東リサーチセンター作成]

PEM については、以下のように分析されている。
・ 感度分析の結果、最もコストに影響を与える要因は電気料金であった。
・ スタック装置と BOP 費用（プラント付帯設備など）も全体のコスト構造に大きな割合を占めていた。
・ 電気消費量を低減することがコスト低減に重要である。

SOEC については、以下のように分析している。
・ 感度分析の結果、最もコストに影響を与える要因は電気料金であった。（現状 $2.34/50t/日（総費用の 47%）、将来(2025 年) $2.49/50t/日（総費用の 65%））
・ 水素製造コストに強く影響を与えているのは電気料金である。しかし、スタック装置の寿命を延ばす等により全体コストの低減を図ることができる。
・ また、熱源に使用されるエネルギーコストがゼロになれば（外部との熱経合を想定していると思われる）製造コスト削減を図ることができる。

（2）水素製造のコスト構造分析事例 水電解（アルカリ、PEM）

Fuel Cells and Hydrogen Joint Undertaking(FCHJU)によるレポート“Study on development of water electrolysis in the EU, Final Report for the Fuel Cells and Hydrogen Joint Undertaking”においては、アルカリ型およびPEM型の水電解装置のコスト分析がされている。

図17に示すように、アルカリ型、PEM型とも、スタック費用の比率が大きい。

図17 アルカリ型およびPEM型水電解システムのコスト構造
[FCHJUレポート19より東リサーチセンター作成]

さらに、スタック費用の内訳は表9のようであった。アルカリ型では電極の費用が、PEM型ではバイポーラプレートが、スタック費用の約半分を占めている。

表9 アルカリ型およびPEM型水電解システムのスタック費用内訳

<table>
<thead>
<tr>
<th>アルカリ</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>アノード</td>
<td>XX</td>
</tr>
<tr>
<td>カソード</td>
<td>XX</td>
</tr>
<tr>
<td>電極面積</td>
<td>XX</td>
</tr>
<tr>
<td>チッププレート</td>
<td>XX</td>
</tr>
<tr>
<td>バイポーラプレート</td>
<td>XX</td>
</tr>
<tr>
<td>膜</td>
<td>XX</td>
</tr>
<tr>
<td>シーリング</td>
<td>XX</td>
</tr>
<tr>
<td>フラッジ</td>
<td>XX</td>
</tr>
<tr>
<td>タイロッド</td>
<td>XX</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[FCHJUレポート19より東リサーチセンター作成]

41

(3) 水素製造のコスト構造分析事例 メタン熱分解

University of Queensland（豪州）の Parkinsonらの論文 "Techno-Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas" においては、メタン熱分解による水素製造コストを分析している。

図18および図19に示すように、水素製造コスト全体における最大コストは原材料費、設備費における最大コストは、高温を作るためのアーク炉であった。

![熱分解プラント(1500kt,20年)における水素製造コスト：1.72ドル/kg](image)

図18 メタン熱分解による水素製造コスト

[Parkinsonらの論文⑤より東リサーチセンター作成]

<table>
<thead>
<tr>
<th>項目</th>
<th>スト</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Arc Heater</td>
<td>5000万ドル</td>
<td>77%</td>
</tr>
<tr>
<td>PSA（水素分離回収）</td>
<td>800万ドル</td>
<td>13%</td>
</tr>
<tr>
<td>Heat Exchange</td>
<td>600万ドル</td>
<td>9%</td>
</tr>
<tr>
<td>Pyrolyzer</td>
<td>16万ドル</td>
<td>0.25%</td>
</tr>
<tr>
<td>Carbon Bed</td>
<td>16万ドル</td>
<td>0.25%</td>
</tr>
<tr>
<td>合計</td>
<td>約6400万ドル</td>
<td></td>
</tr>
</tbody>
</table>

図19 メタン熱分解プラントの設備コスト

[Parkinsonらの論文⑤より東リサーチセンター作成]

もし、反応温度を1000℃以下にすることができれば、アーク炉の代わりに天然ガスや水素の燃焼による加熱を用いることができる。すなわち、低コストの材料を使用することが可能である。燃焼加熱器（fired heater）はどこでも手に入るものであり、プロセスとしても適用しやすい。この代替プロセスについて、似たような温度で運転しているSMRの

ヒーター設計を適用してコスト推計した結果、水素1kgあたりの製造コストを0.1〜0.15ドル程度低減することができるという結果であった。SMRによる水素製造コスト（1.1ドル/kg水素）とはまだ大きな聞きがあるものの、CO₂排出は大きく低減できることができるが示されている。

(4) 水素製造のコスト構造分析

以下の4つのメタン改質プロセスを組み合わせた5つの複合プロセスについてのコスト評価をしている（製造される合成ガスの成分と量をそろえている）。

1) メタン水蒸気改質（SMR）
2) ドライリフォーミング（DMR）
3) 自己熱改質（ATR）
4) 逆シフト反応（RWGS）

<table>
<thead>
<tr>
<th>プロセス</th>
<th>年間経常コスト（百万ドル/年）</th>
<th>設備投資額（百万ドル/年）</th>
<th>原料コスト（百万ドル/年）</th>
<th>炭素税（百万ドル/年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>水蒸気改質+ドライリフォーミング</td>
<td>353.2</td>
<td>40.60</td>
<td>メタン:350.5</td>
<td>12.60</td>
</tr>
<tr>
<td>水蒸気改質+逆シフト反応</td>
<td>373.0</td>
<td>57.17</td>
<td>メタン:338.7</td>
<td>15.03</td>
</tr>
<tr>
<td>水蒸気改質+自己熱改質</td>
<td>582.2</td>
<td>21.78</td>
<td>メタン:577.7</td>
<td>0.802</td>
</tr>
<tr>
<td>水蒸気改質+改質逆シフト反応</td>
<td>506.5</td>
<td>56.40</td>
<td>メタン:439.0</td>
<td>17.09</td>
</tr>
<tr>
<td>改質型自己熱改質</td>
<td>900.9</td>
<td>18.28</td>
<td>メタン:270.4</td>
<td>17.78</td>
</tr>
</tbody>
</table>

※炭素税:21ドル/トン・CO₂と仮定

[Baltrusaitisらの論文をより東リリサーチセンター作成]

水蒸気改質プロセスは、自己熱改質プロセスに比べて設備投資が高額で、ニトロ化炭素排出による排出税（炭素税）も高額である。

自己熱改質プロセスでは、原料（燃料）として酸素が必要であり、コスト増の要因と

なっている。1 トンあたりの液化酸素の価格が $62 以下であれば、コスト高の問題は解決すると考えられる。一方で、メタンの消費量が低く、設備費が少額、かつ排出税が少額、とコスト的に優れている点も多い。
3.2.2 C-H 結合分離（メタン熱分解）

(1) 技術概要

メタンの熱分解反応は、以下の式で表される吸熱反応であり、生成物は水素と固体炭素のみである。

\[
\text{CH}_4 \rightarrow \text{C}(s) + 2\text{H}_2 \quad \Delta H = -37.4 \text{kJ/mol-H}_2 \\
(\text{CH}_4 \rightarrow \text{C}(s) + 2\text{H}_2 \quad \Delta H = -75 \text{kJ/mol-C})
\]

現在、水素は主にメタンの水蒸気改質により製造されているが、水蒸気改質は水素 1 トンの製造あたりおよそ 11.5 トンの \(\text{CO}_2 \) を排出している。これに対して、メタンの熱分解は \(\text{CO}_2 \) を発生することなく水素を生成できる方法として注目されている。副生する固体炭素は、カーボンブラックとして産業上の利用価値が高い物質である一方で、その有効活用あるいは安全な処理方法が本技術の課題でもある。

メタン熱分解反応におけるメタンの平衡転化率は高温低圧になるほど高い 22。
メタン熱分解反応の平衡時のメタン転化率および水素ガス濃度について、メタン水蒸気改質と比較したデータを図 20 に示す 23。メタン転化率は全ての温度域で水蒸気改質の方が大きいが、水素濃度については、水蒸気改質では 80%程度の限界であり、600℃以上では熱分解の水素濃度が水蒸気改質を上回る。

![図 20 メタンの水蒸気改質および熱分解の反応平衡](image)

図 20 メタンの水蒸気改質および熱分解の反応平衡

[(出所) 産業技術総合研究所 齊田満・高木幸 ご提供資料]

メタンは、強固な C-H 結合（440kJ/mol）により、非常に安定な有機分子のひとつである。メタンの熱分解は、無触媒の場合には 1200℃以上の高温を必要とするが、Ni/Al₂O₃、Fe₂O₃、Pd/Al₂O₃、カーボン等の触媒を用いることにより低温でも十分な反応温度を確保

23 産業技術総合研究所 齊田満・高木幸 ご提供資料
することが可能である。
一般に、メタンの触媒的熱分解は、以下のステップで進むと考えられているが、まだ明らかになっていない点も多い24。
1.触媒分子の活性表面へのメタン分子の化学的吸着(chemisorption)
2.化学吸着したメタン分子の炭素と水素への分離の進行

触媒としては、鉄系やニッケル系を中心に各種の金属触媒が利用されている。メタンやその他の軽質炭化水素の熱分解を促進する一般的な触媒としては、アルミナ、シリカ-アルミナ、シリカ-マグネシア(反応温度は800〜1000℃)や Ni, Co, Fe, Ptベースの触媒(反応温度は500〜1100℃)、活性炭、カーボンプラック、ナノカーボン、グラファイト等の炭素系触媒(反応温度は850〜950℃)などグラフから読み取り)がある25,26。

(2) 主な技術課題
本反応は、CO₂を排出することなく水素製造ができる技術として期待が大きいが、まだ研究段階であり、技術的課題が多い。

現状の主な技術課題は以下と考えられる22,24。

- 反応温度の低減化
- 触媒劣化と再生
- 効率的な加熱方法
- 生成する炭素の有効利用

- 反応温度の低減化
メタン転化率の向上、不純物の生成(PAH 等)抑制、高品質の炭素生成などのためには、高温での反応が必要である。高温環境をつくるため、投入エネルギーが非常に大きい。例えば、反応温度を500〜600℃程度まで低下させることができれば、投入エネルギーの低減だけでなく、反応器等に使用する材料コストも抑えることができる。この点から、本反応プロセスの研究開発課題として最も活発に取り組まれているのが、反応温度を低下させるための触媒開発である。
無触媒の場合には1200℃以上の高温を必要とするが、触媒を用いることにより反応温度を低下させることができる。現状では、Ni系触媒では500〜700℃程度、鉄系触媒では700〜950℃程度、炭素系触媒では850〜950℃程度、Co, Ni, Pd, Pt, Cr, Ru, Mo, W

などの各種金属触媒で700～1000℃とできることが報告されている25。

このほか、低温プラズマの利用により反応温度を850～900℃に低下させることができるという報告がある。ただし、低温プラズマの使用には相当量の電力を消費する27,28。注）後述する米国のネプラスカプロジェクトは熱プラズマを用いたプロセスである。

□ 触媒劣化と再生
触媒上や反応器表面への炭素析出は、触媒の活性低下の原因や反応器の妨害物となりうる。炭素を燃焼あるいは蒸気でガス化して取り除く場合には、触媒により反応温度を低温化させ、エネルギー消費量を減らすことができても、触媒再生作業のためにCO₂を排出することになってしまう。
この課題を解決するための研究開発として、炭素析出による触媒の劣化を起こしにくい炭素触媒等の開発が注目されている。

□ 効率的な熱の供給方法
本反応は吸熱でおり、熱の供給が必要である。
アーク炉を用いて加熱する場合は、電力消費が大きく、したがってCO₂排出を増やしてしまうことになる。また、このような加熱においては、リアクタ自体も加熱する必要があるため、多くのエネルギー投入が必要となる。
次項で紹介しているSOLHYCARBプロジェクトのように、熱源として、太陽光エネルギーを利用する研究もおこなわれている。
生成した水素の一部を燃焼させることによって、反応に必要な熱を供給した場合は、CO₂を排出しない。

□ 生成する炭素の分離・有効利用
副生炭素を効率的に分離するという点で、溶融金属を用いたプロセスが開発されている。溶融金属を用いたメタン熱分解では、炭素の溶解度が低いため、固体炭素を分離しやすいという利点がある。また、溶融金属は熟媒体としても効果的である。リアクタ表面への炭素析出の問題もないとされる。

溶融金属を用いてのメタン熱分解は、溶融金属床にメタンをパプリングして行われている。カールスルーエ工科大学は、溶融金属（スズ）を用いたメタン熱分解反応について、1175℃でのメタン転化率78%を報告している注29,30。スズにはメタン熱分解に対する触媒作用はないと示されている注31。カリフォルニア大学は、触媒金属の合金（Ni-Bi合金（27%Ni、73%Bi））を溶融金属として用いた場合、1065℃でのメタン転化率95%であったと報告している注32。溶融金属を用いた研究は活発であるが、どのようにフローのプロセスにつなげることが、まだ課題は多い。

固体炭素は、産業的な価値が非常に高い。触媒の種類や反応温度により、カーボンフラメントやアモルファスカーボンなどさまざまな種類の炭素が生成することが報告されている注23。豪州のHazerは、電池グレードの炭素を製造している。

メタン熱分解反応と生成炭素の関係については、研究実績が多くないため、今後の研究が期待されるところである。

高付加価値の炭素を生成することは、本反応の経済性を高めることに大きく貢献する一方で、可燃性の物質であることから、安全な取扱いおよび処理方法を確立することも課題と認識されている。本反応を水素製造目的で実施した場合には、副生する炭素の量が大量となることにも留意が必要である。

（3）関連プロジェクト
メタンの熱分解関連プロジェクトを表 11 にまとめた。Monolith 社および Hazer 社によるプロジェクト（）以外は、いずれもすでに終了しているプロジェクトである。

表 11 メタン熱分解関連のプロジェクト

<table>
<thead>
<tr>
<th>プロジェクト名</th>
<th>研究開発する団体</th>
<th>主な研究開発項目等</th>
<th>目標</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolith</td>
<td>チャネル(米国)</td>
<td>う 天然ガスのプラズマ熱分解によるカーボンブラック製造 う 副生成物である水素は、ネブラスカ電力公社の石炭焚きポイラを置き換えるために使用 う 水素を二酸化炭素からの合成ガス製造</td>
<td>う 多年間積算計画</td>
<td>-</td>
<td>う 多年間</td>
</tr>
<tr>
<td>Hazer</td>
<td>チャネル(豪州)</td>
<td>う 蒸留に安定な金属鉱石を用いたプロセス。 う 生成炭素の品質は電池グレードを想定。 う カーボンプラックの特性評価</td>
<td>う 多年間プレビオットプラント完成</td>
<td>-</td>
<td>う 多年間</td>
</tr>
<tr>
<td>Monolith</td>
<td>チャネル、サイアス、ドイツ</td>
<td>う 天然ガスの熱分解による水素と炭素の製造 う ボーカルール化によるカーボンプラックの製造 う 水素と二酸化炭素からの合成ガス製造</td>
<td>不明</td>
<td>€ 2,329M</td>
<td>う 2010年9月から2016年</td>
</tr>
<tr>
<td>BASF, Linde, ThyssenKrupp</td>
<td>サスティナビリティ研究所(オース)カールスルーエ工科大学(ドイツ)</td>
<td>う 渍融スズを用いた無触媒プロセス。</td>
<td>不明</td>
<td>-</td>
<td>う 不明</td>
</tr>
<tr>
<td>BASF, Linde, ThyssenKrupp</td>
<td>サスティナビリティ研究所(オース)カールスルーエ工科大学(ドイツ)</td>
<td>う ゾーラーリアクタの設計、モデル化、建設 う ゾーラーリアクタの計画、評価 う 生成ガスの分析、水素の精製 う カーボンプラックの特性評価 う スケールアップ</td>
<td>メタン分解率: 60% 水素濃度: 80% 水素生成: 10% 炭素生成: 1% 反応温度: 800℃</td>
<td>€ 9.2M</td>
<td>う 2013年9月〜</td>
</tr>
</tbody>
</table>

各プロジェクトについて以下に詳述する。
ネブラスカプロジェクト（米国）
米国の start-up である Monolith Materials によるネブラスカプロジェクトは、カーボンブラック製造のため、天然ガスのプラズマ熱分解プラントを建設している。Mines ParisTech の Fulcheri チームおよび Aker Solutions と提携している。
副生成物である水素は、ネブラスカ電力公社（NPPD：Nebraska Public Power District）の石炭焚きボイラ（125MW）の代替に使われる。2016年に建設開始、2018年に最初の生産（initial production capacity online）、2020年に全稼働の予定である。リアクションの詳細は明らかにされていない。
プラズマ分解プロセスでは、天然ガスをプラズマ反応器に投入して分解する。プラズマ・アークでは電力が使用され、分解反応に熱を提供する。プラズマ熱分解の利点は高品質のカーボン・ブラックが製造できること、原料に対して柔軟であること（副生物の混入など）である。過去には、Kvaerner による CB&H プロセス（Kværner carbon black and hydrogen process）で、商業プラントが建設され1999～2004年に稼働していた。天然ガスを原料とした場合、1時間あたり 1000 Nm³ の水素と 270 kg のカーボンブラックを生成したことが報告されており、技術の蓄積がある分野といえる。

Hazer（豪州）
Hazer は、2010年に University of Western Australia (UWA)（豪州）からスピンアウトして創立された会社であり、非常に安価な鉄鉱石を触媒に用いたメタンクラッキングによる水素とカーボンの生産の事業化を目的としている。シドニーにデモプラントを有し、スケールアップに向けた検討を続けている。2017年に、プレバイロットプラントが完成している。プレバイロットプラントは 30 トン H₂/年のレベルとのことである。（ニュース記事情報）
Hazer のメタンクラッキング技術の概要を以下に示す。安価な鉄鉱石を触媒として用いること、電池グレードの炭素を製造することが特徴である。

- 触媒：鉄鉱石
- 反応温度：800 以下
- メタン転化率：55・65%
- 副生炭素：Spherical Graphite（電池グレード）

University of Sydney、化学エンジニアリング会社 Kemplant（南アフリカ）、水素製造

34. Monolith 社 ファクトシート（2016年9月）
35. IPCC Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005)
36. Grad, P. Making H₂ and Graphite from Methane, *Chemical Engineering* ホームページ（2016年4月1日）
37. Hazer Group ホームページ
プラントのサプライヤーである Pan American Hydrogen（米国、テキサス）とそれぞれ提携して開発を進めている。

- GtF&S- Gas to Fluids and Solids（ドイツ）
 ドイツの BASF、Linde、ThyssenKrupp のコンソーシアムは、BMBF の“Technologies for Sustainability and Climate Protection ・ Chemical Processes and Use of CO2”の枠組みの中での補助金を受け、GtF&Sプロジェクト（Gas to Fluids and Solids）を進めていた 39,40。
 気体を液体と固体に変換するというプロジェクトであり、メタンと CO2 を原料に、水素、合成ガス、炭素を作ることを目的としていた。以下に示す 3 つの開発項目のうちの一つがメタンの熱分解である。
 - 天然ガスの熱分解による水素と炭素の製造
 - コークスや鉄鋼製造向け炭素の formulation
 - 水素と二酸化炭素からの合成ガス製造（逆シフト反応による）

 メタン熱分解に関する詳細情報は、プロジェクト情報としては見当らないが、Hazer 社の資料 11）によると、以下とされている。
 - 触媒：なし
 - 反応温度：1200℃
 - メタン転化率：-
 - 副生炭素：Amorphous graphite

- IASS-KIT プロジェクト 29,30,41
 The Institute for Advanced Sustainability Studies （サスティナビリティ研究所：IASS）と Karlsruhe Institute of Technology （カールスルーエ工科大学：KIT）は、溶融金属を利用したメタン熱分解の研究開発を進めている。
 溶融スズを満たしたグラムの下からメタンのパルプを注入すると、パルプが溶融金属の表面に到達したときに分解反応が起こる。
 論文および KIT のプレスリリースにおいて以下のデータが公表されている。
 - 触媒：なし（溶融スズ中での反応）
 - 反応温度：1175℃
 - メタン転化率：78%

40 BASF ニュースリリース（2013 年 7 月 2 日）
副生炭素：Amorphous graphite

EU-Project SOLHYCARB – Solar Cracking of Methane

EUプロジェクト SOLHYCARB は、太陽光エネルギーを利用した天然ガスの熱分解のプロジェクトであり、2006年3月～2010年2月の4年間に実施されていたプロジェクトである。主たる開発内容は以下であった。
・10kWの直接加熱のトルネード型ソーラーリアクタ、10kWhおよび50kWhの非直接加熱の管状リアクタの設計、建設、試験
・キャビティ受熱器に設置した多管式メタンクラッキングリアクタをシミュレーションするHeat-transferモデルの開発
・50kWhパイルットリアクタにおいて副生カーボンブラックの特性評価
・10MWhのソーラーメタンクラッキングプロセスの設計とフローシートの開発

主な結果は以下であった。
・予定した3つのソーラーリアクタの開発に成功。
・50kWhリアクタにおいて、1600-1930Kで72-100％のメタン転化率を達成。
・カーボンブラックは、各種用途における商業レベルに到達。
・residence timeはPAH形成を防ぐことができる100ms程度。
・経済性は、カーボンブラックの価値に高く依存。

C2H2が生成してしまうことによりカーボンの生産量が少ないことが課題であり、バイロットスケールでの生産は、水素が200g/h(88%)、カーボンブラックが330g/h(49%)、C2H2が340g/hであった。43

42 ETH zürich ホームページ
3.2.3 C-H 結合分離（メタン部分酸化）

（1）技術概要
メタンの部分酸化（Partial Oxidation: POX）は、原料ガスを化学量論量の半分程度の酸素と反応させて酸化反応を中途にとどめ、一酸化炭素と水素に分解（合成ガスを製造）する技術である。

\[
\text{CH}_4 + 0.5 \text{O}_2 \rightarrow 2 \text{H}_2 + \text{CO} \quad \Delta H_{298} = -36 \text{kJ/mol} \quad \text{(発熱)}
\]

上式は極めて速い反応であり、また発熱反応でもあるため、反応の進行にエネルギーの投入を必要としないという利点を持つ。

無触媒での部分酸化は、実際には H2/CO = 1.7～1.8 の合成ガスが製造される。Shell 社等により大規模プラントが実用化されているが、1000℃以上の反応温度となるために高耐熱の反応器が必要となり、プラントコストが高騰となる。

触媒を利用する CPOX（Catalytic Partial Oxidation）では、より低温で反応を行うために、一般的な素材による小型の反応器を設計することができ、また合成ガスの H2/CO 比が約 2 となるため GTL プロセスにそのまま導入できる、という利点も持つ。

反応メカニズムについては、活発な研究が行われているものの、まだ完全には明らかとなっていない。文献によれば、以下の 2つのメカニズムが提唱されている。

・“direct mechanism” メタンと酸素が触媒表面で反応し、CO と H2 を生成。

・“combustion-reforming mechanism” メタンと酸素はまず H2O と CO2 を生成し、その後、メタンの CO2 改質あるいは水蒸気改質の反応が起こり、CO と H2 が生成する。

また、以下のような副反応も起こる。

・CH4 + 3/2O2 → CO + 2H2O、CH4 + O2 → CO2 + 2H2

・2CO → C + CO2 (Boudouard 反応：強い触媒作用を持つ金属鉄の共存下で、高温、高 CO 濃度の場合、固体炭素が生成する)

触媒については貴金属系（Pd, Pt, Rh）で実績があるが、高コストであるため、より安価な Ni 系触媒の研究が進められている。

44 基質 a モルに対する触媒の必要量が理論的に a モルまたはそれ以上である場合、その量を化学量論量という。

(2) 主な技術課題
CPOX 反応は、理論通りに進行すれば反応時に CO₂を排出することなく GTL プロセスに適した CO/H₂比の合成ガスの製造が可能で、さらにプラントの小型化を可能とする技術として期待が大きいが、まだ研究段階にあり、技術的課題が多い。
現状の主な技術課題は以下と考えられる。
・反応温度の低温化
・析出炭素および触媒の焼結による触媒劣化
・ホットスポットの回避

反応温度の低温化
POX 反応は発熱反応であるものの、反応速度上、無触媒の場合は 1000℃以上の高温を必要とするが、触媒を利用する CPOX 反応では反応温度を低下させることが可能である。メタン熱分解の場合と同様に、反応温度を 500-600℃程度まで低下させることができれば、投入エネルギーの低減だけでなく、反応器等に使用する材料コストも抑えることができる。
現状では、Cu/(NiMg)Al 触媒で 750 ℃ 47、Rh/CaMnO₃ 触媒で 500〜900 ℃ 48、Ni/CeO₂-ZrO₂/ゼオライト触媒で 400〜700 ℃ 49、Ba/Bi-Co-Nb-O/Ni フィロ珪酸塩触媒で 650〜750 ℃ 50 を達成したとの報告がある。

析出炭素による触媒劣化
触媒上への炭素析出は、触媒の活性低下の大きな原因となる。Duan らは、規則性メソポーラス LaNiO₃ ペロブスカイト触媒は、従来よりも少ない炭素堆積量を示したと報告している 51。一方、Kim らは Ni をドープしたメソ多孔質アルミナ触媒が、炭素析出に対してより強い抵抗性を有すると報告している 52。これらはいずれも、触媒金属が高度に分散していることによって炭素の析出を抑制している、としている。

51 Duan, Q. et al. Partial oxidation of methane over Ni based catalyst derived from order mesoporous LaNiO₃ perovskite, Fuel, 193, p.112-118 (2017)
ボットスポットの回避

POX 反応は反応条件が非常にシビアであり、わずかでも至適条件から外れると生成物の選択性の低下および反応器の損傷の原因となるボットスポットが発生する。Kado はフォーマ状触媒とプレート型反応器を用い、原料の混合ガス流速を適切に制御してボットスポットの発生を回避している 53。

その他、高純度の酸素を安価に供給することも、コスト面からは重要な課題である。

(3) 関連プロジェクト

CPOX の商業化に向けた国レベルの研究プロジェクトは、現在のところ確認されていない。

産学共同および民間プロジェクトとしては表 12 に挙げるものがあるが、いずれも商業化には至っていない 54。

表 12 メタンの部分酸化（直接部分酸化）関連のプロジェクト

<table>
<thead>
<tr>
<th>プロジェクト名</th>
<th>研究開発する団体</th>
<th>主な研究開発項目</th>
<th>目標、目標値</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>独 石油天然ガス・金属鉱物資源機構 「石油・天然ガス開発促進型事業」および「技術ソリューション事業」</td>
<td>千代田化工建設株式会社</td>
<td>メタンと酸素の混合気を安全に扱う反応器設計技術の確立</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>国産連携プロセスのフィードバックシステムを中心とするプロセス構築・評価</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>エネルギー関連技術の検討</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>反応器の高圧化</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>セレクト的な反応特性把握と触媒改良</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>水素・アンモニア製造を対象としたプロセスの経済性の確認</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>グレート型反応器の有効性確認、詳細設計</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

各プロジェクトについて以下に詳述する。

53 Kado, S. et al. WO 2016/152151
54 伊原賢 石油・ガスから液化石油ガスを製造する（GTL技術） - JAPAN-GTLの開発経緯 独・石油天然ガス・金属鉱物資源機構 石油・天然ガス資源情報, p.1-19 (2013)
JOGMECプロジェクト（日本）
日本では2003〜2015年度にかけて、千代田化工建設が貴金属系触媒と反応器を開発し、0.1バレル/日程度の小規模ではあるが3000時間程度の安定製造の実績を有している。
同社は、石油天然ガス・金属鉱物資源機構（JOGMEC）、国際石油開発帝石株式会社と共同で開発を行っており、2020年の商業化を目指している。

ConocoPhillipsプロジェクト（米国）
ConocoPhillips社（米国石油大手）は、COPox™processにより、貴金属（Pt, Rh）系触媒を用いて200バレル/日×2系列相当のプラントで合成ガスを安定して製造した実績がある。
2003年にはカタールにおける16万バレル/日GTLプロジェクトを計画したが、2006年に撤退を表明、2007年にはコスト上昇を理由にGTLプロジェクトの推進中止を表明した。
また、これらの他にプロジェクトとしての情報は確認されていないが、Eni社（イタリア石油大手）は、SCT-CPO（Short Contact Time-Catalytic Partial Oxidation）と呼ばれるプロセスの開発を進めている。2011年には酸素富化空気を用いて、従来技術の1/100の大ささの反応器で合成ガスおよび水素を製造する技術を開発し、引き続き純酸素を使用する技術を開発中、とのことである。

55“Eni-in’2011”, Eni社ホームページ（2011年）
3.2.4 高温水蒸気電解（固体酸化物型電解）（HTEL、SOEC）

水素解技術では、実用技術であるアルカリ水素解法と固体高分子型（PEM型）水素解法のほか、固体酸化物型電解セルを用いた高温水蒸気電解が研究されている。

表 13 水素解技術の概要

<table>
<thead>
<tr>
<th></th>
<th>実用段階</th>
<th>研究段階</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>アルカリ</td>
<td>固体高分子型（PEM）</td>
</tr>
<tr>
<td>電解質</td>
<td>KOH 溶液</td>
<td>プロトン交換膜</td>
</tr>
<tr>
<td>アノード</td>
<td>ニッケル、ニッケル系合金、鉄、ニッケルコバルト酸化物</td>
<td>酸化イリジウム被覆チタン、イリジウムルテニウム・コバルト酸化物等</td>
</tr>
<tr>
<td>カソード</td>
<td>鉄、鉄-希土類、鉄-ニッケル合金等</td>
<td>白金被覆チタン、白金触媒カーボン等</td>
</tr>
<tr>
<td>温度</td>
<td>50 - 80℃</td>
<td>室温 - 90℃</td>
</tr>
<tr>
<td>水素の圧力</td>
<td><30 bar</td>
<td><165 bar</td>
</tr>
<tr>
<td>発電ユニットサイズ</td>
<td>3.2MWe</td>
<td>1.5MWe</td>
</tr>
<tr>
<td>水素製造</td>
<td>760Nm³/h</td>
<td>285Nm³/h</td>
</tr>
<tr>
<td>電流密度</td>
<td>0.2 - 0.6A/cm²</td>
<td>1.0 - 2.0A/cm²</td>
</tr>
<tr>
<td>エネルギー消費</td>
<td>50 - 78kWh/kg</td>
<td>50 - 83kWh/kg</td>
</tr>
<tr>
<td></td>
<td>⊯5 - 7.0kWh/Nm³</td>
<td>⊯5 - 7.5kWh/Nm³</td>
</tr>
<tr>
<td>水素純度</td>
<td>99.5-99.9998%</td>
<td>99.9-99.9999%</td>
</tr>
<tr>
<td>耐用年数（システム）</td>
<td>20年以上</td>
<td>20年（？）</td>
</tr>
<tr>
<td>耐用年数（スタック）</td>
<td><90,000時間</td>
<td><80,000時間</td>
</tr>
<tr>
<td>設備投資費用</td>
<td>US$ 850 - 1500/kW</td>
<td>US$ 1500 - 3800/kW</td>
</tr>
</tbody>
</table>

以下の資料を参考に作成した。

- Cost assessment of hydrogen production from PV and electrolysis (CSIRO: オーストラリア連邦科学産業研究機構) (21 March 2016)
- CO₂フリー水素ワーキンググループ報告書 H29 年 3 月

ここでは、低コストの水素製造法になると期待されている固体酸化物型（SOEC）水素解を取り上げて調査した。
（1）技術概要

高温水蒸気電解（High Temperature Steam Electrolysis: HTEL）もしくは固体酸化物型水電解（Solid Oxide Electrolysis Cells: SOEC）は、固体電解質型燃料電池（Solid Oxide Fuel Cells: SOFC）の発電原理の逆反応を行うことで、高温状態の水蒸気を電気分解により水素と酸素に分解する技術である56。SOECでは、カソード（水素極）に送込まれた水蒸気が電子を受け取って還元反応が進み、水素ガスと酸素イオンが生成する。酸素イオンは電解質中をアノード（酸素極）へ向かって移動する。アノードでは酸素イオンが電子を奪われ（酸化）、酸素ガスが生成する。これらの反応が逆方向へ進むとSOFCの発電反応となる。SOECの基本的な構造や材料はSOFCと同じであること57、SOECの開発はこれまでのSOFC開発で培われてきた材料に基づいて行われている58。

水の電解による水素の製造は、アルカリ電解質を使った電解槽で古くから行われてきているが、1970年代に入ると、イオン交換膜を使った固体内分子燃料電池の開発に伴い、このイオン交換膜を適用した水電解法の開発が始まった。これらの方策に比べSOECでの水電解では、熱力学的に投入電力の低減が可能となることから、低コストの水素製造法になると期待されて研究開発が進まれてきている。1980年代ころからDornier社やWestinghouse社などが、YSZ（イットリア安定化ジルコンニア）やCSZ（セリア安定化ジルコニア）などを電解質としたセルで研究開発を行ってきたが、日本では2000年代に入ってから東芝や九州大学での研究開発が始まっている59。セルの形状もSOFCと同様、平板型とチューブ型の方式が検討されており、前者ではセル集積度が高く、後者ではガスシール性が高いという利点がある。

水電解に必要なエネルギーは次のように表すことができる。
カソード : \(\text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2 + \text{O}^{2-} \)
アノード : \(\text{O}^{2-} \rightarrow \text{1/2O}_2 + 2e^- \)
全反応 : \(\text{H}_2\text{O} \rightarrow \text{H}_2 + \text{1/2O}_2 \Delta H = \Delta G + T\Delta S \)

ここで\(\Delta H \)はエンタルピ変化（全反応熱）で、水電解では吸熱反応となる。また、\(\Delta G \)はギブズエネルギー変化、\(T\Delta S \)はエントロピー変化に伴うエネルギー変化である。これらのエネルギーの温度依存性を表したもののが図21となる。

図 21 水電解に必要なエネルギーの温度依存性
[文献 06-093481 等を参考に東リサーチセンター作成]

液体の水が気体となった後の温度域では、水電解に必要な全エネルギー (ΔH) は大きく変化しないが、電気エネルギーとして投入する必要がある ΔG 分のエネルギーは温度の上昇とともに減少していく。熱エネルギーとして投入する必要がある TΔS 分のエネルギーより外から十分に供給が可能な条件下であれば、高温になるほど SOEC で使われる電気エネルギーコストは減少する 57。 ところで、SOEC に必要な熱エネルギーをどの様に供給するかが課題となる。実際に水電解を行うと、セルには内部抵抗があるため、電流密度の増加に伴いオーム損による発熱がおこる。この発熱によって無負荷状態の温度と等しくなる条件（熱中立点）で運転することが可能となるが 60、外部からの熱エネルギーを投入することで投入電圧の損失分を減らすことができる。SOFC と組み合わせたシステムを作ることで、発電時の排熱を蓄熱装置に貯蔵し、SOEC での電解時にこの貯蔵熱を利用するという方法が検討されている 56。 電極材料や電解質の種類によって、システム全体の熱バランスが適切となる条件が変わってくるため、各種構成材料の特性を見極めながらシステム設計をする必要がある。また、エネルギー効率を上げるための材料開発も必要となる。

References:
60 松永健太郎ら．固体酸化物形電解セルを用いた水素製造システム及び電力貯蔵システム．東芝レビュー，71(5)，p.41-45 (2016)
(2) 主な技術課題

SOECの技術課題はSOFCと共通であり57,58、セル性能の向上、コストの低減、の3項目に大きく分けられる。これらは単独で解決されるわけではなく、それぞれがお互いに影響しあう。

SOECにおける最大の目標は水素製造コストの低減であり、水素社会実現に向けての重要な目標である。例えばDOEでは2020年に< $2/kg-H2($0.18/Nm3-H2)という目標値を立てている61,62。これを達成するために、SOECの技術開発課題が設定されることとなる。

セル性能の向上

水素製造量を増やすには、単純に高電流密度ではなく高電圧の条件下でセル（スタック）を運転することとなる。この時に必要な過電圧を下げることが全体のエネルギー効率向上にも影響する。そのため、できるだけ高電流密度でかつ低電圧での電解が共通する目標となる。

電極の活性化過電圧に関しては両極とも重要であるが、特にカソードでの低減が課題となる。一般的にNiYSZ系が使用されているが、Niが水蒸気によってNiOやNi(OH)2等へと酸化され、高温の運転条件下ではそれが蒸発して電極中のYSZ上に析出し、電極層の著変が進んで劣化していくという問題がある。後述（表14）のプロジェクトⅠではニッケルを添加したり、Sm添加CeO2（SDC）などの酸素イオン伝導体をカソードに混合したりして過電圧を下げる試みが行われている。プロジェクトⅠではNi酸化物を最初に電極層へ仕込み、その後Niに還元する工程で電極層内に適当な細孔を作って物質移動抵抗を下げる取り組みをしている。プロジェクトⅡでは、Ni凝集を抑制できる安定化酸化物を分散させた電極の開発を目指している。プロジェクトⅢでは、Ni系セラミックス材料の開発を目指している。以上から、カソードについては、Ni系を中心としてさらに高性能化を図るための材料開発や、電極構造の最適化がポルトネック技術となる。

アノードについてはLa-Sr-Mn（LSM）系が一般的に使われているが、さらなる性能向上のため、プロジェクトⅠではナノ構造酸素電極が、プロジェクトⅢではヘロプスカイト型材料の探索が検討されている。プロジェクトⅢでは発生する酸素の拡散抵抗を低減するため、ハニカム型構造の電極を検討している。初期性能も含め、次に記述する耐久性向上に対応するための技術（材料探索、電極構造改良）がポルトネックとなるであろう。

電解質層については、運転温度の低温化を目指すほどイオン伝導度の向上が課題となる。現状では電解質層の材料としては、ジルコニア（ZrO2）をベースとして、イットリア（Y2O3）、CaO、MgOなどをドープとして加えて使われている。プロジェクトⅢではScをドープしてイオン伝導度を上げる取り組みをしているが、コスト面

注）運搬・圧縮・貯蔵・補給などにかかるコストを除いて$2/kgが最終目標、運搬・圧縮・貯蔵・補給を含めると、$4/kg（$0.36/Nm3）となる。
で懸念がある。
耐久性やコストの点も含めて、高いイオン伝導性材料の開発がボトルネックとなる。

最後にセル製造技術に関し、特にプロジェクト□はマクロな規則構造（ハニカム構造）を目指しており、セル製造技術がボトルネック技術の一つになるであろう。

□ 耐久性向上

前項□で記述したように、素材の選択がまずボトルネックとなる。また、電解質層からアノード（酸素極）が剥離するという問題や、アノードのLSM成分がYSZ中へ拡散したり、逆にYSZ中のZrがアノードへ拡散したりするなどの現象が観察されている。

剥離機構の解明と、それを抑制する材料の開発や電極構造の改良（中間層の挿入など）が課題となる。

長期運転ではセルのシールの課題がある。カソードでは、セルのシール材に使われるSiO2などのガラス材料などが不純物としてYSZの粒子に混入し、短期的には不働態化（一時的な活性低下で、活性化は可能）や、長期的な不可逆的劣化などが見られている。カソードに限らず、セルのシール技術については現在もまだ課題が多く、耐久性の向上についてのボトルネック技術の一つとなる。プロジェクト□では、加圧水素の輸送を考慮したロバストなシール技術が検討課題に挙がっている。

セル特性や耐久性に影響する変数としては、電流密度や電圧以外に、運転温度、水蒸気の濃度・利用率・流量などが関係してくる。プロジェクト□では、これらの劣化影響因子の明確化を課題として挙げている。

□ コストの低減

先に述べたようにSOECの最大の特徴は、外部から熱エネルギーを投入することで電解に投入する電気エネルギーを減らすことができ、これは水素製造コスト低減につながる。

システム全体のエネルギー効率向上のために、どのような外部熱源を利用するのかは電解効率の向上にとって重要な課題である。プロジェクト□では、SOFCとSOECを組み合わせたシステムの検討が行われており、その時の排熱を貯蔵するための蓄熱材が検討されている56。

プロジェクト□では、スタッフとシステムのモデルを作ってシミュレーションし、ホットモジュールの設計に生かしている。プロジェクト□では、システム運転変数の最適化のために電解特性マップを開発し、これに基づき全体システムの配置と運転条件変数の開発を進めつつある。プロジェクト□では、電気エネルギーに視点を置いて再生可能エネルギーと連携した時の経済性について研究を進めている。

セル特性の向上が水素製造コスト低減に有効であることはもちろん、電解エネルギー効率を上げるためにシステム全体として熱エネルギーをどの様にマネジメントするかが課題となるであろう。
（3）関連プロジェクト
国内および国外のSOEC関連プロジェクトの概要をまとめたものを表14に示す。

表14 国内・国外におけるSOEC関連プロジェクト一覧

<table>
<thead>
<tr>
<th>プロジェクト名</th>
<th>研究開発する団体</th>
<th>主な研究開発項目</th>
<th>目標、目標値</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料電池等先導研究開発事業（高効率水素製造技術の研究）「高温水蒸気電解システムの研究」</td>
<td>株式会社東芝、大同大学（再委託）</td>
<td>パネル・スタックの技術開発</td>
<td>90%以上で90%以上以上の運転、電圧上昇率90%以下</td>
<td>(他6件のプロジェクトを含めた合計)</td>
<td>2015年10月〜2018年12月</td>
</tr>
<tr>
<td></td>
<td></td>
<td>水素製造システムの開発</td>
<td>水素製造原単位500以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>電力貯蔵システムの開発</td>
<td>絶熱連続システムの設計、運転制御設計</td>
<td></td>
<td></td>
</tr>
<tr>
<td>固体酸化物形燃料電池等実用化推進技術開発／次世代技術開発「可逆動作可能な固体酸化物型燃料電池による低コスト水素製造および高効率発電を利用した電力貯蔵」</td>
<td>九州大学</td>
<td>三相電極・電解質の研究開発</td>
<td>1000V(1000)</td>
<td>100万円（総額）</td>
<td>2015年0月〜2018年0月</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電解質の湿式化法による薄膜化</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>金属粒子製作プロセスの研究開発</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>しない</td>
<td>九州大学</td>
<td>三相電極・電解質の研究開発</td>
<td>1000V(1000)</td>
<td>100万円（総額）</td>
<td>2015年0月〜2018年0月</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電解質の湿式化法による薄膜化</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>金属粒子製作プロセスの研究開発</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>しない</td>
<td>九州大学</td>
<td>三相電極・電解質の研究開発</td>
<td>1000V(1000)</td>
<td>100万円（総額）</td>
<td>2015年0月〜2018年0月</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電解質の湿式化法による薄膜化</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>金属粒子製作プロセスの研究開発</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

62 本研究は電力貯蔵が目的であり、水素製造を目的としたものではない。
<table>
<thead>
<tr>
<th>プロジェクト名</th>
<th>研究開発する団体</th>
<th>主な研究開発項目</th>
<th>目標、目標値</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOECシステム</td>
<td>東京理科大学</td>
<td>(1)スタックの効率の向上</td>
<td>(1) >95%（スタックでの効率）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)システムの構成を改善</td>
<td>(2) >90%（システムでの効率）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$3.75M</td>
<td>2016年10月〜2019年9月</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2製造コスト</td>
<td>東京理科大学</td>
<td>(1)水素製造コストの低減</td>
<td>(1) < 2.00/kWh (0.18/Nm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)再生可能エネルギーとの統合</td>
<td>(2) 1.2V @ 1A/cm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)高圧水素の運搬</td>
<td>(3)負荷応答性向上、熱サイクル能力向上</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,875,101</td>
<td>2016年10月〜2019年9月</td>
</tr>
<tr>
<td>プロジェクト名</td>
<td>研究開発する団体名</td>
<td>主な研究開発項目</td>
<td>目標、目標値</td>
<td>予算額</td>
<td>事業期間</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Reversible Solid Oxide Cells (ReSOC)</td>
<td>VTT TECHNICAL RESEARCH CENTRE OF FINLAND OY, DTU TECHNICAL UNIVERSITY OF DENMARK, CEA FRENCH ALTERNATIVE ENERGIES AND ATOMIC ENERGY COMMISSION, ENEA ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT, UNIVERSITY OF BIRMINGHAM, DELFT UNIVERSITY OF TECHNOLOGY, EPFL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 0.2 cm² / 700 °A - 0.5%/1000h - 700 °A + 1.25A/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 20% / 2%/1000h</td>
<td></td>
<td>ゲル - スタック間の特性低下が 20% 以下、圧力で劣化率 2%/1000h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 50% / 90%</td>
<td></td>
<td>ポトルタイプシステムでのシステムのコンセプトと特性の検証</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>€ 2.5M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Name</td>
<td>Research Developing Organizations</td>
<td>Main Research Development Project</td>
<td>Goal, Objective</td>
<td>Budget</td>
<td>Duration</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Horizon 2020 Funding EU</td>
<td>Development of new electrode materials and understanding of degradation mechanisms on Solid Oxide High Temperature Electrolysis Cells, SElySOs</td>
<td>Foundation for Research and Technology Hellas (FORTH), Greece (Coordinator) Centre for Research & Technology Hellas (CERTH), Greece Forschungszentrum Juelich GMBH (Juelich), Germany Vysoka Skola Chemicko-Technologicka V Praze (VSCHT), Czech Republic Centre National de la Recherche Scientifique (CNRS), France Prototech AS (CMR Prototech), Norway PyroGenesis SA (PyroGenesis SA), Greece</td>
<td></td>
<td>€ 2,939,655 (Total)</td>
<td>3 years 11 months to 4 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
各プロジェクトについての詳細（これまでの進捗等）を以下に記載する。

□ NEDO 水素利用等先端研究開発事業/高効率水素製造技術の研究
「高温水蒸気電解システムの研究」東芝、大同大学（再委託）
(1)セル/スタックの技術開発
2016年度〜2017年度では、セル・スタックの耐久性向上に開発の重点を置く。特に2016年度では、電解電流条件の影響を評価しながら、材料レベルでのセル劣化影響因子の抽出を行った。1000時間後の運転を行った結果、酸素極層でのCoの局在化、水素極層でのNi粒子の形態変化などの挙動を把握した。最終的に目標劣化率の達成を目指す。
(2)水素製造システムの開発
マルチスタック試験では、フルスタック8台で運転試験を行い、電解電流変動に対する水素生成速度、温度、圧力の応答を評価した。検証機(10Nm³/h級)の系統構成や機器使用を検討し、ヒートマスタランス図を作成した。水素製造原単位4.88kWh/Nm³の見通しを得た。
(3)電力貯蔵システムの開発
高温蓄熱装置を用いるシステムを解析し、電力貯蔵効率の向上効果を確認した。また、相変化型蓄熱材を選定し、容器の試作、発射率・伝熱特性の評価を行い、特性は問題の無いレベルであることを確認した。

□ NEDO 固体酸化物形燃料電池等実用化推進技術開発/次世代技術開発
「可逆動作可能な固体酸化物形燃料電池による低コスト水素製造および高効率発電を利用した電力貯蔵」九州大学
(1)SORC（Solid Oxide Reversible Cell）電極・電解質の研究開発
高効率で、可逆動作可能な低温作動型SOFCを開発し、Feの酸化還元と組み合わせることで、2次電池のように作動する新しい概念の金属・空気電池の開発が目標である。燃料極の材料として、NiO-10wt%CMF（Ce、Mn、Fe）、Ni-Fe(9:1)酸化物の性能が優れていた。
(2)電解質の湿式法による薄膜化
低温でも優れた効率での電解と発電の達成を目的に、LSGM（La-Sr-Ga-Mg）を電解質としたセルの作成を行い、SOFC/SEOCの特性を検討した。Ni極との間にTi-CMF層を挿入することでNiの拡散が抑制され、600℃での程度の特性が得られた。500℃での特性改善が課題となる。

63 NEDO 平成 29年度成果報告会 発表 No.H203、「水素利用等先端研究開発事業」中間評価報告書（案） 概要（2015）
64 NEDO 平成 29年度成果報告会 発表 No.F202, NEDO 平成 28年度成果報告会 発表 No.F202, 平成 27年度成果報告会 要旨集 No.F2-3-1
Solid Oxide Based Electrolysis and Stack Technology with Ultra-High Electrolysis Current Density and Efficiency,

Fuel Cell Energy, (Subcontractor: Versa Power Systems, Ltd.)

Developed a new design (HiPoD) with single cells of 3 A/cm² high electrolysis current density and 1000 hours of stable operation at a current efficiency of 1.8%/1000h (target value <4%/1000h) achieved. Additionally, at 6 A/cm², single cell stability was also achieved at 78% (LHV calculation) of the current efficiency.

A full-size stack design was developed, where a 2 A/cm² stack operated for 1000 hours and achieved a stable operation. The system was completed, and for a 250 g/h (2.78 Nm³/h) hydrogen production, the water vapor production was limited to 2 A/cm².

Modular SOEC System for Efficient H₂ Production at High Current Density

Fuel Cell Energy, Partner: Versa Power Systems, National Energy Technology Laboratory

The stack and system stability were confirmed, and the current efficiency was suppressed for single cell testing. The conditions of operation were variable: water temperature, water circulation, water vapor, and water vapor production. The full-size stack developed a target of 350 cell (height 44 cm, volume 10 L), and for water vapor production, 38 kg/day @ 1.5 A/cm² was achieved. For a 2 A/cm² stack, 250 g/h (2.78 Nm³/h) hydrogen production (0.18–0.45 kg/h) was achieved.

The results showed that operation at 750 °C, 1 A/cm² conditions for 2300 hours, achieved 1.33%/1000h, 2 A/cm² for 2400 hours, and 2.44%/1000h at 3.5% efficiency.
Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS
Ceramatec, Inc., Partners: PARC (Palo Alto Research Center), GAIA (Gaia Energy Research Institute) 67

DOE が掲げる水素製造コスト $2/kg ($0.18/Nm³) が最終目標である（運搬・圧縮・貯蔵・補給などに関わるコストは除く）。この目標に対し電解運転の効率を上げる必要があり、このプロジェクトではセルがハニカム構造を取っていることが特徴である。また電解質の伝導性向上のためにスカンジウムを使っていることも特徴であるが、コスト面での懸念がある。セル製作法として、テーブキャスティング・ラミネーションや 3D 印刷などを探検する。2017 年度内にセルサイズをスケールアップし、ガスシール性の向上に取り組む。

2018 年度にはショートスタックの運転で 0.4 cm² を目指し、2019 年度にはスタックでの水素製造量 1 kg/日を目標とする。

EU Horizon2020 funding(EU) BALANCE

VTT TECHNICAL RESEARCH CENTRE OF FINLAND OY 他全8機関 68

(1) 欧州における Reversible Solid Oxide Cells (ReSOC) 技術に関する課題の集積
国家重点の研究成果が断片的に行われているために、次世代の燃料電池および水素技術の開発と展開が妨げられている。このプロジェクトにより、ReSOC 技術の多様な観点での国家活動を特定・定量・分析し、これより欧州の研究課題を集積し、相乗効果を得て技術のブレーキスルーを生み出す。

(2) 次世代型固体酸化物セルの開発
代替燃料極材料やナノ構造酸素極を最適化・統合し、次世代酸化物型電池を開発する。電解モードでは、より低い温度 (700°C) での低比抵抗 (0.2 cm²) の達成を目的とする。さらに、1.25A/cm² での運転で 0.5%/1000h 以下の劣化率を目標とする。

(3) 既存 SOFC または SOE の可逆運転用スタック設計の最適化
コスト低減のために、インターノックスークに低コストなフェライト系ステンレス鋼の適用を検討し、耐久性評価を行う。セルとスタックでの間の比較で特性低下が 20%以下、SOE モードで劣化率 2%/1000h 以下を目標とする。

67 2017 Annual Merit Review Proceedings, Project ID: PD144
68 BALANCE プロジェクト ホームページ
(4) プロトタイプシステムでの ReSOC のコンセプトと特性の検証

SOFC モードで効率50%、マルチkW スケールでの電解で効率90%を目標値とする。運転の可逆性と柔軟性について、2500h の運転実証を行う予定としている。

なお、このプロジェクトに先行して行われた SOCTESQA(Solid Oxide Cell and Stack Testing, Safety and Quality Assurance) プロジェクトは (2014年5月～2017年4月、補助金額 : 約€1.6M) SOFC 及び SOEC を評価するための試験手順を確立するという目的で実施された。ここで確立された評価法が、この BALANCE プロジェクトで利用されていることを付記しておく。

EU Horizon2020 funding(EU) Development of new electrode materials and understanding of degradation mechanisms on Solid Oxide High Temperature Electrolysis Cells,
SElySos
Foundation for Research and Technology Hellas, (FORTH) 他 全 7 機関⑨

現状の SOEC 技術は成熟しておらず、性能および耐久性は最も取り組むべき課題となっている。現在の Ni/YSZ カソード及び LSM アノードでは、電解質で劣化率が2〜5%/1000h、H₂O/C₀₂ 共電解時はさらに大きな劣化率となっている。SElySos プロジェクトでは4年間の機会を利用し、劣化を最小限に抑え、主に水電解時 (H₂O/C₀₂ 共電解時においてもある程度は) の性能と耐久性の向上に焦点を当てる。具体的には(1)最先端 Ni 系セラミックの改良、(2)代替ペロプスカイト型材料、について調査を行い、(3)酸素極の調査を通じたより効率的な新しい酸素極の検討・提案が実施される。これらにより、標準化された条件下で単セルにより少なくとも 3000h の運転を行う。さらにショートスタックの開発を行い、少なくとも 2000h の運転を行う。

ANR (The French National Research Agency) Electrodes / electrolyte interfaces optimization for the durability of Solid Oxide Electrolysis Cells, DJANGO
CEA (CEA Grenoble) 他 全 3 機関⑩

高温水蒸気電解は高効率で有望な技術であるが、目標の劣化率 1%/1000h に対して現状は 2 もしくは 3%/1000h の対照である。当プロジェクトは、まず耐久性の改善に焦点を当てる。最も劣化された電極組成と微細構造を有した電気化学セルを作製し試験する。プロジェクトパートナーの ICMCB によって開発された Ln₂NiO₄系酸素極が評価される。パートナーの CTI はスケールアップした電極（100cm²）を作製する。

⑨ SElySos ホームページ、
Funded Projects under Horizon 2020, Secure, clean and efficient energy, Fuel Cells and Hydrogen Calls 2014, FCH 2 JU, institutional PPP
⑩ The French National Research Agency ホームページ
3.3 革新技術の研究開発動向調査
3.3.1 CO₂を原料としたエタノール合成

(1) 技術の概要
エタノールは、化学産業にとって重要な化学品に変換が可能である。そこで、CO₂原料からエタノールを合成する技術を取り上げた。
CO₂は熱力学的に安定な物質である。反応しにくい物質ではないが、エネルギーを必要とするなど、CO₂から直接エタノールを合成する技術は、まだ研究段階である。CO₂からのエタノール合成には効率的な触媒開発と反応システム開発が必要である。

(2) CO₂原料によるエタノール合成のメリット
CO₂削減を目的としたエタノール生成技術としては、バイオエタノールがある。バイオマス原料からのバイオエタノール合成は、一時期カーボンニュートラルとして扱われた71ことともあって脚光を浴び、研究開発が活発化したが、一方で食糧との競合が問題となった。そのため、非可食原料からの研究も行われているが、エネルギー収支が合うプロセスの開発や、供給の安定性などが課題となっている。また、バイオマスは原料の植生により、バイオエタノール製造の地域が限られている。
一方、CO₂を原料としたエタノール製造は、地域に依存せずに実施できる可能性がある。

(3) CO₂を還元させる環境に関する課題
エタノールを合成する環境として、液相、気相、超臨界が考えられるが、それぞれ以下の課題を有している。

液相反応
- 温度に制限がある。熱的な化学反応では反応速度の面で不利となる（電気化学反応が好ましい）
- CO₂は水に難溶性
- CO₂還元に大量の電力が必要

気相反応
- 高温条件が必要となる

超臨界
- 反応容器が高圧

エタノールと CO生成の平衡化率から、エタノール生成には、高圧・低温が有利となる72。

71 CO₂削減効果はあるが、LCAの観点からは、カーボンニュートラルではないと評価されている。
72 室井高城：触媒からみるメタン戦略・二酸化炭素戦略. シーエムシー・リサーチ, p.157 (2017)
（4）各触媒の研究概要

CO₂を原料にエタノール生成に関する研究として、現在は、各種触媒の研究が行われている。以下に触媒研究の概要を記載する。

□ Fe触媒

Feベースの触媒（Fe:Cu:Al:K）とCuベースの触媒（Cu:Zn:Al:K）を1:2で混合し330℃で反応させた結果、CO₂転化率31.1%、エタノール空時収率574 g l⁻¹ h⁻¹が得られている。

（乾ら、京都大学工）

Fe-KとCu-Znを組合せた複合酸化物では、CO₂/H₂=1/3（反応温度300℃、圧力7.2 Mpa）で、CO₂転化率44.4%、エタノール選択率19.5%、エタノール収率8.6%である。Feに対するCuの割合、Kの割合で生成物が決まる。（工業技術院（現在：産業技術総合研究所））

フェントン反応を用いてCO₂を有機物に還元する。大気圧・大気温度で反応が可能です。H₂O₂およびFe(II)塩を反復添加し、エタノール/メタノール/ギ酸/酢酸を生成させた。H₂O₂とFe(II)のモル比が1または2の場合、・OHの生成が促進された。

□ Cu触媒

アルコール合成機能をもつFe触媒とメタノール合成機能を有するCu基触媒を混合し、エタノール合成を試みた報告がある。Fe基触媒とCu基触媒の混合物にPa·Gaを添加した時、エタノールの空時収率は476 g l⁻¹ h⁻¹となった。CO₂変換率は54.5%だった。

（乾智行ら、京都大学工）

74 特許 2685130号 エタノールの製造方法
76 a) Inui, T. Highly effective conversion of carbon dioxide to the valuable compounds, Greenhouse Gas Control Technol., p.331-336 (1999)
Cuベースの触媒K/Cu-ZnにFeを加えてアルコール合成を行った。Feを加えたことで結果的にBET表面積が増加した。CuZnFe₀.₅K₀.₁₅でC₂⁺OHの生成が多くなった。\(\text{Chenら, Chinese Academy of Sciences} \)

Cuナノ粒子を窒素ドープしたcarbon nanospikeに担持し、電気化学的にCO₂からエタノールを合成した。\(\text{Yang Songら, Oak Ridge National Laboratory} \)

\[2\text{CO}_2 + 9\text{H}_2\text{O} + 12e^- \rightarrow \text{C}_2\text{H}_5\text{OH} + 12\text{OH}^- \quad E^0 = 0.084 \text{V vs. SHE} \]

このcarbon nanospikeは50〜80nmの長さ、カール状で2nmの先端、グラフェン様のものである。窒素近傍の炭素が正に分極し、銅と近接し活性点として機能する。ファラデー効率は63±7.1(1.2V vs RHEの時)であった。エタノール選択率は84%である。

表15 carbon nanospikeによるCO₂からの合成ファラデー効率

<table>
<thead>
<tr>
<th>V vs RHE</th>
<th>CO</th>
<th>CH₄</th>
<th>Ethanol</th>
<th>H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.2</td>
<td>5.2 ±6.1</td>
<td>6.8 ±4.1</td>
<td>63 ±7.1</td>
<td>13 ±5.2</td>
</tr>
</tbody>
</table>

Cu-Pd合金触媒を用いてエタノール合成した結果、触媒の相分離構造の時、高効率となった（約15%）。Cuナノ粒子による触媒と同じ傾向である。C₂化合物の生成において、CuはCOの二量化活性サイトである。（Ma, 貞清ら, 九州大学）整然と並んだPd-Cuナノ粒子を用いて、エタノールを生成した。92.0%の高い選択性が得られた。\(\text{Shuxing Baiら, Soochow University,台湾} \)

(Cu,M)(O,S):M=Ni, Sn, Coで、CO₂からエタノール合成した。アニオン空孔12.1%の時、エタノール収率が最高だった。人工光合成で、常温、常圧で実施した。\(\text{Xiaoyun Chenら, National Taiwan University of Science and Technology} \)

モリブデン

MoS2ベースの触媒は、Dow Chemical CompanyとUnion Carbide Corporationにより開発され、COからC₂OHの生成が行われた。これによりアルカリにより促進させた触媒でCO₂から直接アルコール生成の研究が行われている。しかし、C₂OHの選択性は6%以下である。

Ru/Co触媒

トリフェニルホスフィノキサイドを添加したRu₃(CO)₁₂にCo/Ru=3の割合でCoを添加するとCO₂の転換率41.9%，エタノール選択率29.2%に向上している（出願：通商産業省基礎産業局）。

Ru/Coを用いてパラホルムアルデヒドとCO₂とH₂からエタノールを合成した。

\[
(\text{CH}_3\text{CHO})_n + \text{CO}_2 + \text{H}_2 \xrightarrow{\text{Ru(acac)}_3\text{CoBr}_2\text{LiLi}} \text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{O} \\
\text{140℃, in DMI}
\]

LiIをプロモーターとして使用し、50.9 C・mol%のエタノールを生成した。（Jingjing Zhangら, Chinese Academy of Sciences）

Ru/Coを30/70（μmol）で用いLiI（mmol）をプロモーターとして使用し、ジメチルエーテルから合成した時の、エタノール選択性は73.3 C・mol%に達した（Qingli Qianら, Chinese Academy of Sciences）。

\[
\text{CH}_3\text{OCH}_3 \text{(g)} + 2\text{CO}_2 \text{(g)} + 6\text{H}_2 \text{(g)} \xrightarrow{\text{Ru(PhP)}_3\text{Cl}\text{CoI}_2\text{LiLi}} 2\text{CH}_3\text{CH}_2\text{OH} \text{(l)} + 3\text{H}_2\text{O} \text{(l)} \\
\text{150℃, in DMI}
\]

\[\Delta H^\circ_{298 K} = -440.5 \text{kJ} \cdot \text{mol}^{-1}\]
\[\Delta G^\circ_{298 K} = -158.3 \text{kJ} \cdot \text{mol}^{-1}\]

Ru/Coを60/30（μmol）で用い、LiBrをプロモーターとし、bis(triphenylphosphoranyliden)ammonium chlorideを助触媒としてアルコールを合成した。エタノール空時収率(STY)は30.5 C・mmol L⁻¹ h⁻¹に達した。（Meng Cuiら, Chinese Academy of Sciences）

83 松尾 2664046 号 炭酸ガスからのアルコール類の製造方法
Rh触媒

RhとCoは、COの水素化によるアルコール合成に有効な触媒である。しかしRh単独では、エタノール合成は難しい。そこで種々の元素の添加による研究が行われている。

Rh触媒にCo添加してもエタノール合成にはほとんど影響が無かった87。Na、KをRh触媒に添加すると、C2含酸素化合物の選択性が高くなる87。アルカリ金属塩の添加によりエタノール生成を向上させる働きがある。

荒川らはRh-Co/SiO2にNa塩を添加し、エタノール選択性を改善させた。CO2転化率は、Na/Rh原子比0.1で最大となり、30.5%、エタノール選択性はNa/Rh原子比0.5で最高となり8.7%であった87。

Co添加Rh/SiO2触媒では、メタノールとCOがある程度生成し、水素化能が高い場合にエタノール選択性が高い。Rh-Co-Na/SiO2の場合、Na添加量が少ないとき水素化が促進されCH4が生成し、反応が進まないとCOが生成しエタノール選択性は高まらない87。

Rh-Mn-Li/SiO2では、エタノール転換率2.6%と低く、選択性は17.2%である。これにFeとLiを添加したRh-Li-Fe/SiO2、34%の選択性でエタノールを得ている88。

（荒川ら、通商産業省工業技術院）

その他

Pt/Co3O4を用いて、アルコールを生成している89。純粋なCo3O4では、アルコール選択性が低いため、1wt%のPtを添加するとエタノールの空時収率29.0(100×mmol g-cat⁻¹h⁻¹)である。（Z.Heら，Chinese Academy of Sciences）

Ptナノ粒子により、Pt/Co3O4触媒として、CO2からエタノールを生成した90。最高空時収率0.56 mmol/g-cat・h (200°C、2 MPa)であった。（Bi Ouyangら，South-Central University for Nationalities, China）

Au/TiO2ナノクラスターを用いて、CO2からエタノールを合成した。酸素空孔を有するアナターゼ結晶相は、高いエタノール合成性能があった91。触媒100mgを5mL DMF(N,N-dimethylformamide)で、45 bar H2、15 bar CO2、10 hでエタノール合成をした時の空時収率（STY）635.4 mmol/g-metal・hであった。（Wangら、Chinese Academy of Sciences）

88 特許 2611184号 二酸化炭素からエタノールを製造する方法及び製造用触媒
91 Dong, W. et al. Direct synthesis of ethanol via CO2 hydrogenation using supported gold Wcatalysts, Chemical Communications, 52(99), p.14226-14229 (2016)
プラズマ触媒を用いて、CO₂とCH₄から室温（30°C）で、液体燃料を生成した。CO₂/CH₄ が3:1でエタノール選択率約18%である。（Li Wangら、リバプール大学）

(5) エタノール合成のまとめ

CO₂からエタノールを合成する研究を表16にまとめた。エタノールの合成研究は、まだ研究室レベルであり、触媒材料の研究が多い。研究は1990年代後半に盛んであったが、その後新しい発表は少なく、2015年頃から再び活発に発表がなされている。

1990年代は日本が活発に発表していたが、2015年以降は中国の研究が多い。

<table>
<thead>
<tr>
<th>触媒の種類</th>
<th>触媒概要</th>
<th>エタノール合成概要</th>
<th>研究者</th>
<th>発表年</th>
</tr>
</thead>
<tbody>
<tr>
<td>アルカリ触媒とメタリック触媒の混合物にアルカリを添加</td>
<td>エタノールの空時収率は35%</td>
<td>乾ら、京都大学 工</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>アルカリ触媒の生成</td>
<td>アルコールへの空時収率は35%</td>
<td></td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>ナノ粒子を電気化学的に合成</td>
<td>ファラデー効率35%</td>
<td>乾ら、京都大学 工</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>ナノ粒子</td>
<td>選択性</td>
<td>乾ら、京都大学 工</td>
<td>台湾</td>
<td></td>
</tr>
<tr>
<td>ナノ粒子</td>
<td>エタノール生成量</td>
<td>乾ら、京都大学 工</td>
<td>台湾</td>
<td></td>
</tr>
<tr>
<td>アルカリ</td>
<td>アルカリの選択性は35%以下</td>
<td>乾ら、京都大学 工</td>
<td>台湾</td>
<td></td>
</tr>
<tr>
<td>アルカリ触媒にメタリック触媒の混合</td>
<td>アルカリの選択性は35%以下</td>
<td>乾ら、京都大学 工</td>
<td>台湾</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>触媒の種類</th>
<th>触媒概要</th>
<th>エタノール合成概要</th>
<th>研究者</th>
<th>発表年</th>
</tr>
</thead>
<tbody>
<tr>
<td>純酸化</td>
<td>純酸化のエタノールを生成</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>酸化を伴う触媒を用い生物とプロモーター、ジェンシルエーテルから合成</td>
<td>エタノール選択性は</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>酸化</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>純酸化に、触媒を添加</td>
<td>エタノール選択性</td>
<td>荒川ら 通商産業省工業技術院</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>空時収率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>空時収率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高空時収率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

その他 注目されるものとして、微生物発酵によるエタノール製造の実証試験が始まっており、これは、古細菌(acetogen)を用いて、発酵により CO, CO₂含有ガスをエタノールに転換する技術を用いるものである。この技術により中国において実証試験を行い、22,500 t/年のエタノール生産を目指している。最初は CO からエタノールの製造を行い、将来的には CO₂からエタノール製造を目指している。

93 日本経済新聞(2015年3月3日)
94 LanzaTech ホームページ
3.3.2 革新的反応分離技術の研究開発動向

本項では、化学品製造プロセスにおいて省エネルギー化に大きく貢献する技術として、革新的反応分離技術の研究開発動向を調査した。

生成物の分離技術としては、膜分離（メンブレンリアクタを含む）および膜分離・蒸留のハイブリッド技術を取り上げた。膜分離は、加熱・冷却を繰り返してエネルギーを大量消費する従来の蒸留プロセスに代わる、大幅な省エネルギー化や CO₂排出削減と経済性向上が期待されるものとして注目されている。

反応技術としては、流通反応器（フロー合成）およびマイクロ波を活用した技術を取り上げた。これらは外部から投入するエネルギーの削減と反応促進（高効率化）ができるものとして期待されている。

ここでは、各技術の研究開発動向として日米欧の国家プロジェクトを中心に述べる。2017 年以降に進行している大規模プロジェクトを中心に一覧表にまとめた（表 17）。

(1) 【分離技術】膜分離

膜分離は、各成分の膜透過速度の差を利用して分離するプロセスである。連続的に分離ができ、高い分離性能を有することからエネルギー消費量が少ないといった特徴がある。化学品製造プロセスへの適用においては、耐熱性や耐薬品性に優れる無機膜（ゼオライト膜、シリカ膜、炭素膜等）を中心として活発な開発が行われている95。1998 年頃よりバイオエタノール等の精製プロセスにおいて実用化しているアルコール脱水膜については、2015 年に三菱ケミカルと太陽日酸が米国でのマーケティングを開始96、2016年には三井造船と三菱ケミカルがゼオライト膜事業での業務提携97、などの発表があり、プロセスでの膜分離技術の活用は進展している。

日本

ゼオライト等の無機膜を用いて、触媒で生成したオレフィンやメタノールを分離するプロセスの研究が進められている。

JST CREST は「超空間制御に基づく高度な特性を有する革新的機能素材等の創製」（2013〜2018年度）として「精密分子ふるい機能の高度設計に基づく無機系高性能分離材料の創製」プロジェクトを進めている。高透過性ゼオライト膜の合成とその評価方法の開発や、量子分子ふるいの最適材料の探索と創製（D₂/H₂分離、¹³CH₄/¹²CH₄）に取り組んでいる98。

96 太陽日酸プレスリリース（2015年 12月3日）
97 三井造船プレスリリース（2016年 7月14日）
98 JST CREST ホームページ：研究領域「超空間制御に基づく高度な特性を有する革新的機能素材等の創製」平成 27 年度研究年報
NEDO は、「二酸化炭素原料化基幹化学製品製造プロセス技術開発」（2014-2021年度）において「二酸化炭素資源化工学技術開発」プロジェクトを推進し、ソーラー水素と CO₂を原料として基幹化学製品 (C₆-C₇ オレフィン) を製造する技術開発を行っている。オレフィン合成の一プロセスであるメタノール合成 / MTO（Methanol to Olesfins）反応では、Cu-Zn 系工業化触媒を介して CO と H₂からメタノールを合成し、メタノール / H₂O 選択系透過膜を用いて生成物を反応系外に取り出す設計を提案し、ラボスケールで合成系の確立を実証できたことが報告されている98,100。

NEDO「エネルギー・環境新技術先端プログラム/革新的化学製造プロセス技術の開発/革新的分離技術の導入による省エネ型基幹化学製品製造プロセスの研究開発（2014－2021年度）」では、エチレン、プロピレン等の基礎化学分離製・回収技術の基盤となる分離材料開発を実施している。分離材料は高分子膜の開発を行い、新規分離プロセスの最適化と省エネルギー効果を検証している。具体的には、シリカ膜の開発では水素/有機ガス (C₂, C₃)、有機ガス (C₂, C₃)/窒素、MOR ゼオライト膜では IPA/水、高性能炭素膜ではエチレン/水素、MOF 膜では C₂・C₃ の飽和炭化水素と不飽和炭化水素の分離能の評価を行っている101,102。

JST さきがけ「戦略的創造研究推進事業/光電気化学的メタノールカップリング」（北九州工業大学、2015－2018年度）では、メタンをエタンなどの低級炭化水素へ転換する新しい触媒反応として、光電気化学的な膜型反応システムを開発している。室温付近の低温で C-H 結合を活性化するため、光と電場と触媒を使う。膜型反応器は、メタンを活性化する反応場と酸素を活性化する反応場を分けた構造になっている。既知のメタン酸化カップリング反応と比較評価して、革新的に高活性・高選択性なプロセス開発を目指している103。

終了したプロジェクトとして、JST A-STEP 「高耐酸性分離膜を利用した工業的エステル製造に関する研究」（2011年度、産総研）がある。耐酸性を有するゼオライト分離膜を利用したエステル製造に関する研究を実施した。分離膜による脱水が複数のエステル製造に有効であることを示した。また、1 回あたりのエステル化反応に伴う分離膜の性能低下を、40%から 0.5%に大幅に抑制することに成功している104。

98 NEDO ホームページ、二酸化炭素原料化基幹化学製品製造プロセス技術開発
100 NEDO、平成 28年度中間年報「二酸化炭素原料化基幹化学製品製造プロセス技術開発」（管理番号 2017000000843）
101 NEDO ホームページ、エネルギー・環境新技術先端プログラム
102 NEDO、平成 27年度中期年報 革新的分離技術の導入による省エネ型基幹化学製品製造プロセスの研究開発（管理番号 2016000000247）
103 JST さきがけ、【天野 史喜】光電気化学的メタノールカップリング
104 A-STEP、研究成果最適化支援プログラム 有機化学分野評価結果一覧、高耐酸性分離膜を利用した工業的エステル製造に関する研究

77
米国

ACS GCI (the American Chemical Society Green Chemistry Institute) と AIChE (the American Institute of Chemical Engineers) が中心となり、化学業界の化学者・エンジニアと連携しながら、「化学製造における持続可能な代替分離(AltSep)プロセスの開発と産業展開」を加速させる取り組みを進めている。最近の活動としては、次世代化学製造における分離プロセスについてロードマップの作成を行った105。

DOE（Department of Energy）の先進製造技術局（AMO: Advanced Manufacturing Office）は、SBIR Phase IIIB にて「オレフィン/パラフィン分離の新規膜システム (Novel Membrane Systems for Olefin/Paraffin Separations)」（Newport, DE）のプロジェクトを2016年から開始している。アモルファス・フルオロポリマー（フッ素樹脂）を持つ安定性および高いガス移動性と、銀塩の高い選択性を組み合わせた膜分離システムを開発し、オレフィンとパラフィン（エチレン/エタン、プロピレン/プロパン）の分離を検討している。この提案システムでは、オレフィン吸収再利用することにより IRR (Internal Rate of Return) は110〜160％、エネルギー 85 trillion BTU/yr を削減できるとしている106。

欧州

EU Horizon2020 の MEMERE 「統合膜型反応器によるメタンの活性化(MEthane activation via integrated MEembrane Reactors)」プロジェクト（2015〜2019年）では、空気より分離した酸素を用いて、メタンをエチレンに直接変換する新規な触媒膜型反応器の設計・スケールアップ・検証を実施している。反応器は、単一ユーニットに異なるプロセスステップを統合し、従来リアクタより高い収率を達成させる。この達成のために、MnNa2WO4/SiO2 触媒配合物の開発および CO2 耐性の高い酸素選択膜（目標コスト < 5000€/m2）を開発している。定期報告では、MEMERE 技術は、従来技術に比べ高収率

107 DOE-AMO, Advanced Water Removal via Membrane Solvent Extraction
(> 40%)を得ることを示した。LCA と経済的評価については、MEMERE 技術はメタンからのエチレン生産量を 25%から 35〜40%に増加させるとともに、生産コストの削減、エネルギー強度は-50%、排出量は-60%を達成できたと報告している109,110。

Horizon2020 の ROMEO "膜強化操作によるリアクタの最適化(Reactor optimisation by membrane enhanced operation)" (2015〜2019 年) は、触媒と膜技術により単一ステップで化学合成と下流処理を行う反応器を開発している。ROMEO 技術能力を検証するため、オレフィンと合成ガスからアルデヒドの変換を実施した。合成ガスはバイオマス由来の CO または CO を含む合成ガスを使用した。ROMEO 反応器は、支持体上に分散させた不揮発性イオン液体に均一系触媒を均質固定させた (SILP 技術) 薄膜（触媒活性膜）を組み込むことにより、化学合成と分離処理を一度に実行できた（「ツー・イン・ワン (two-in-one) 反応器」）。本プロジェクトコンセプトは、大量産業プロセスの総エネルギー消費を最大 78%削減、排出量を最大 90%削減することができるが期待されている111。

H2020 PROMECA のプロジェクト (2017〜2020) では、革新的な膜と触媒の開発を介した化学プロセスの開発強化のため、産学での技術交流の強化を図っている112。

膜分離の今後の技術課題としては、分離膜の設計および製造、作成した膜の分離性能評価、物性評価および工学的解析、積層化およびモジュール化、プロセス設計をそれぞれ高度化していくことや、膜分離や分離膜製造過程のメカニズム等、実用技術を支えるべき原理・原則の理解を進めるとともに、それらを評価する技術を確立すること、等が挙げられている。

また、膜型反応器の実用化のためには、高い透過速度、高活性な触媒の付与のために、膜や触媒に精密な構造制御が必要、とされている113。

109 MEthane activation via integrated MEbrane Reactors, H2020・SPIRE・2015
110 SPIRE・05・2015 - New adaptable catalytic reactor methodologies for Process Intensification
111 ROMEO, H2020・SPIRE・2015
112 H2020, PROMECA(PROcess intensification through the development of innovative MEembranes and CAtalysts)
113 NEDO. 化学品製造プロセス分野の技術戦略策定に向けて, 技術戦略研究センターレポート TSC Foresight, 14, p.18 (2016)
(2) 【分離技術】ハイブリッド技術

ハイブリッド技術とは、蒸留法と、分離原理が異なる膜分離や吸着分離等の方法とを、各方法の特徴を有効活用できるように最適に組み合わせる（ハイブリッド化する）ことで、分離プロセスのエネルギー消費量を削減する技術である。

膜分離と蒸留を統合したハイブリッドプロセスでは、相対揮発度が小さい混合物や共沸点を有する混合物のような、蒸留では分離しづらいものを高精度に分離濃縮できることから、蒸留分離よりもエネルギー消費量が少ないという膜分離の特徴を活かしたものになっている。

図 22 に、産総研が発表した、共沸点を有するイソプロピルアルコール（IPA）と水の分離を対象としたハイブリッドプロセスの概略を示す。このプロセスでは、蒸留分離により混合物を共沸組成近くまで分離し、膜分離により共沸組成以上に目的成分を濃縮する。これにより、蒸留プロセスでは IPA と水の混合にエントレーナ（共溶媒）を用いて複数の蒸留塔で分離濃縮していたのに対し、ハイブリッドプロセスではエントレーナの添加量が少なく、不要なので、蒸留塔の消費エネルギーを削減できる。

この他、ゼオライトを用いた脱水分離膜用いた IPA-水系や酢酸・水系の分離、プロピレシエン選択膜を用いたプロピレンとプロパンの分離などが検討されている。114,115

技術課題としては、実用化に見合う分離膜材料の開発や、プロセスのスタートアップや外乱によりプロセス流体の流量、組成、温度、圧力が変化した際の分離膜の応答性等のような、異なる分離操作のハイブリッド化に伴うプロセスダイナミクスに関する検討、長期運転に伴う分離膜の劣化によるハイブリッドプロセスの性能低下に対する安定性や安全性を維持する方法の構築、等が挙げられている。115

図 22 膜分離と蒸留のハイブリッドプロセス（模式図）

114 山本雄大. 解説 ハイブリッド化世代省エネ分離技術. 配管技術, 59(7), p.6-11 (2017)
115 山本雄大ら. 膜分離と蒸留のハイブリッド化によるプロピレン・プロパン分離の省エネルギー化, SCEJ 82nd Annual Meeting, D216 (2017)
(3) 【反応技術】流体反応器（フロー合成）
反応溶液を流しながら連続的に化学合成を行う「フローパラミストリー」は、化合物を高速かつ効率的に合成する技術である。フローパラミストリーにおいて、反応原液の混合や加熱・冷却および反応そのものを行うデバイス群を「フローリアクタ」と呼ぶ。フロー合成のユニットとしては、フローリアクタと送液ポンプを接続し、温度・圧力制御装置などを組み込むことで基本構成となる。フローパラミストリーの対象は有機化合物から無機化合物まで幅広い。

EU Horison 2020のMANGANOXI「マンガヌースのアルケンエポキシ化、シスジヒドロキシル化、アルカンCH酸化触媒の開発」(The development of manganese-based alkene epoxidation, cis-dihydroxylation and alkane C-H oxidation catalysts)」(2015～2017年)はアルケンのエポキシ化の触媒に、既知のマンガン錯体(MnTMTACN)を酸化剤とし、リウ酸と過酸化水素とともに使用することに着目した。これに基づいて触媒開発をフロー反応器内で組み込んだ結果、高い再現性とスケールアップの可能性を報告している116。

NEDO「超先端材料超高速開発基盤技術プロジェクト」(2016～2021年度, 産総研)は、計算科学と材料開発の融合・連携により革新的な機能性材料の創製・開発の加速化を目指している。その一環として、自在合成を可能にするフローリアクタの総合的な触媒・流体界面設計技術の開発を実施している118。

技術課題としては、高い生産品質を維持しながら廃棄物を削減でき、反応持続性のあるリアクタの開発(反応系で生じるスラリー処理、溶媒や触媒の回収法の確立等を含む)、腐食性の高い試薬の操作、およびリアクタ・コイル内の中間体および生成物の沈殿防止、プロセスに適したリアクタタイプの選択、などが挙げられている119。

(4) 【反応技術】マイクロ波技術
マイクロ波を物質に照射すると、熱伝導性の悪いものや形状が複雑なものも、内部まで短時間で均一に加熱できることや、系の構成を設計すれば損失係数を吸収の大きな物質を選択的に加熱できる、という特徴をもつ。これらの特徴を化学物質製造プロセスに活かすことができれば、省エネルギー化が期待されている120。

EU FP7のMAPSYNプロジェクト「マイクロ波、超音波、プラズマ支援合成(Microwave, Ultrasonic and Plasma assisted Syntheses)」(2012-2016年)は、マイクロ波、超音波、

117 MANGANOXI, H2020-MSCA-IF-2014
118 NEDO, 超先端材料超高速開発基盤技術プロジェクト
プラズマシステムが支援する革新的でエネルギー効率の良い化学反応プロセスの開発を実施した。具体的には、肥料生産に不可欠なステップである窒素固定反応へのプラズマの適用、および半水素化反応へのマイクロ波の適用について研究された。マイクロ波による半水素化反応では、鉛フリーの TiO₂に担持したバラジウム触媒を開発し、これをフローリアクタに組み込んだ。マイクロ波がリアクタに浸透し、その中に含まれる反応媒体を選択的に加熱することにより化学合成を促進するシステムである。ジヒドロビリジン合成の例では、収率は従来に比べ2倍、反応は2時間から1分に短縮、エネルギー使用量は最大90%の減少を示したことが報告されている121。

日本では東工大の和田らが、クライゼン転位反応（Claisen Rearrangement）をマイクロ波照射下で行うことにより、反応温度を63K上昇させれば反応時間を1/60まで短縮できたことをラボ実験で明らかにしている。さらに、実際の工業プラントレベルとしてマイクロ波3連式連続セミバッチ反応器を開発し、バッチ反応器と同等の高品質合成を短時間で達成できたことを実証している122。

大阪大学が設立したマイクロ波化学（株）は、マイクロ波照射した新規固体触媒の活性化を介して、廃食用油などの油脂（トリグリセリド）のエステル交換反応、遊離脂肪酸のエステル化反応をワンボットで行い、メチルエステル化合物（バイオディーゼル燃料）を合成することに成功している。メチルエステルの収率は96%以上を達成しており、製品としての規格を満たしている123。同社は、東洋インキ、BSF、三井化学、三井金属等と提携して、革新的な化学製品製造の事業を展開している124。

マイクロ波利用技術を実際の化学製造プロセスに適用するためには、反応器スケールアップに関連した技術開発として、マイクロ波の浸透深さを考慮した均一加熱のための反応器の設計、マイクロ波の発振出力やその制御系の設計等が挙げられている129。

121 MAPSYN, FP7-NMP-2012-SMALL-6
124 マイクロ波化学株式会社 ホームページ

82
<table>
<thead>
<tr>
<th>表 17 化学品製造に係る反応・分離技術プロジェクト（日米欧）</th>
</tr>
</thead>
<tbody>
<tr>
<td>技術</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>膜分離</td>
</tr>
<tr>
<td>メタノール</td>
</tr>
<tr>
<td>エチレン、プロピレン等</td>
</tr>
<tr>
<td>エタン</td>
</tr>
</tbody>
</table>

83
<table>
<thead>
<tr>
<th>技術</th>
<th>化学品生成物</th>
<th>プロジェクト名</th>
<th>研究開発団体</th>
<th>主な研究開発項目</th>
<th>目標、目標価</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>膜分離</td>
<td>オレフィン (エチレン、プロピレン)</td>
<td>米国</td>
<td>アモルファス・フルオロポリマー/バリフェン分離。</td>
<td>オレフィン/パラフィン分離。</td>
<td>575–5,000 €</td>
<td>2015–2019</td>
<td>Ongoing</td>
</tr>
<tr>
<td>エチレン</td>
<td></td>
<td></td>
<td></td>
<td>新規で安価な酸素選択膜を用いたエチレンの直接変換</td>
<td>69–6,000 €</td>
<td>2017–2020</td>
<td>Ongoing</td>
</tr>
<tr>
<td>アルデヒド</td>
<td></td>
<td></td>
<td></td>
<td>新規で安価な酸素選択膜を用いたエチレンの直接変換</td>
<td>80–9,000 €</td>
<td>2017–2020</td>
<td>Ongoing</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>新規で安価な酸素選択膜を用いたエチレンの直接変換</td>
<td>596–5,000 €</td>
<td>2015–2019</td>
<td>Ongoing</td>
</tr>
<tr>
<td>エポキシ化</td>
<td>フローハンク</td>
<td></td>
<td></td>
<td>新規で安価な酸素選択膜を用いたエチレンの直接変換</td>
<td>20万 €</td>
<td>2015–2017</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>

125 MEthane activation via integrated MEMbrane Reactors, H2020-SPIRE-2015
<table>
<thead>
<tr>
<th>技術</th>
<th>化学品生成物</th>
<th>プロジェクト名</th>
<th>研究開発団体</th>
<th>主な研究開発項目</th>
<th>目標、目標値</th>
<th>予算額</th>
<th>事業期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>フロー合成</td>
<td>有機材料（試作材料）</td>
<td>日本：超先端材料超高速開発基盤技術プロジェクト</td>
<td>産業技術総合研究所</td>
<td>マテリアルズインフォマティクスと融合することで革新的な機能性材料の創成と開発の加速を目指す。試作材料の高速作製用フローバックアタープロセス技術を構築。</td>
<td>材料開発のための年間エネルギー使用量を削減（2030年に約600万tの原油削減相当）</td>
<td>2億円（平成26年度予算）</td>
<td>実行中</td>
</tr>
<tr>
<td>マイクロ波</td>
<td>ファインケミカル</td>
<td>超音波・プラズマによる支援合成（半水素化反応の触媒開発とファインケミカル製造）</td>
<td></td>
<td></td>
<td>エネルギー消費が最大50%削減</td>
<td>200万円</td>
<td>実行中</td>
</tr>
</tbody>
</table>
4. 産業界からの視点、アカデミアへの期待

本調査を通じて把握された民間企業の認識、見解、要望等について、以下にまとめる。

○○○の意義や現状について
w CO₂の絶対量を減らすことが目的であり、CCUの過程で CO₂を排出せずのは意味がない（エネルギー投入による CO₂排出も含む）。
w 水素製造時の CO₂排出を減らすことが重要である。
w 現状の国内の電力価格では、CCU（CO₂還元）はかなり高い。投入するエネルギーの価格がボトルネックである。CCU 由来の燃料が価格競争力を持つためには相当に安い再生可能エネルギーが必要。
w 安価な水素の調達が最重要課題である。副生水素は余っていない。オーストラリアの太陽光、ロシアの水力・風力など、海外の安い再生可能エネルギーを使った水素を使用することが検討されている。
w 再生可能エネルギー由来水素を用いるのが最終形態とと思われるが、まだ課題が多い。
w 安い水素が入手できるようになるまでは、メタンを水素源として使用することも選択肢の一つ。その後、水素に置き換えられるような技術開発をしておくのが良い。
w CO₂削減のためには CCS が必要だが、CCS にはコストがかかる。このコストを CCU で得た利益でまかなうという考え方もある。CCU では、利益を生み出せるような機能化学品を生産するのがよいと考える。

○○○のターゲット
w 合成ガスを製造できれば、その先の技術はある。ただし、投入エネルギー、コストの問題はある。
w エチレンとプロピレンがあれば、ほとんどのものが合成できる。そのソースとしては、メタノールがベストと考える。
w CCU では基礎化学品ではなく機能化学品の製造をめざし、利益をあげるべき。
w メタノールの後の C2 ケミストリーに持ち込むことが重要であると考える。

技術課題、技術開発の方向性、期待するソリューション
w メタンを水素源として使用する技術開発に取り組み、水素が安価になった時点で水素に置き換えられるような技術開発をしておくのが良い。
w メタンの部分酸化反応の低温化。発熱反応であるこの反応が低温で実現すれば、合成ガス、メタノール合成ができ、その後の燃料や化学品合成につながり、発熱反応そのものが利用できる。
w 反応の低温化がもたらすインパクトは大きい。
w 平衡の問題を解決する技術として膜分離に期待している。酸素供給の面からも期待している。
w LCA 評価により、CO₂削減効果のある技術なし技術を明確にした方がよい。企業はそれぞれ、綿密な LCA 評価をしてターゲットを選定している。
w どれか一つの技術に絞るのではなく、地域に応じた選択という観点も検討してよいのではないか。
w 再生可能エネルギーをどのくらいの価格で使用できれば成立するのかをきちんと試算し、その上で LCA を検討するというステップが望ましいのではないか。
w 水素製造による CO₂排出をゼロとできたときに、ナフサクラッカーを下回るプロセスは何か、という観点での技術の選択が必要と考える。
w 評価基準が必要である。
 ý CO₂の排出量について技術の優位性を比較するための LCA 評価基準。
 ý 製造した物質中の炭素の CO₂起源割合に関する評価基準。技術の革新性やコストだけではその技術を評価できない。
 ý 再生可能エネルギーを使うもののコストは、設備の減価償却費への依存度が高い。
 償却期間の基準を統一してコストを比較できるようにすべきである。
w 世界をリードする技術開発をめざすべきであり、サイエンスの限界を議論したうえでの目標設定が重要である。
w 日本国内での実施にこだわらず、日本初の技術を海外で展開するという考えて開発を進めるべきである。

政策面への期待
w CCU にどのように取り組んでいくか、ロードマップの提示がほしい。
w 例えば、産業インフラとして CO₂を活用するものが出来上がり、CO₂を濃縮、貯蔵、メタンと組み合わせる。その後に段階的にソーラーソーラー水素が入ってきてより大きな効果が生まれる、というようなストーリーを作っていくべき。
w 現状分析だけでなく、理想像に対する現状を示し、方向付けをすることが重要である。目指すべき目標が明確になるとよい。
w 企業に取り組む意欲を抱かせるようなモチベーションアップのための仕組み作りが必要と考える。カーボンプライシングというインセンティブが出てくれば、企業も経済的なメリットを見い出せる。
5. 学会活動

調査対象分野を取り扱う学会を以下にまとめた。

表 18 関連学会

<table>
<thead>
<tr>
<th>学会名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>石油学会</td>
</tr>
<tr>
<td>化学工学会</td>
</tr>
<tr>
<td>矽体化学会</td>
</tr>
<tr>
<td>触媒学会</td>
</tr>
<tr>
<td>電気化学会</td>
</tr>
<tr>
<td>日本化学会</td>
</tr>
<tr>
<td>日本表面化学会</td>
</tr>
<tr>
<td>日本エネルギー学会</td>
</tr>
</tbody>
</table>

特に、CO₂有効利用の観点で講演会等を開催している最近の事例を以下に示す。

化学工学会
第49回秋季大会 第1回 化学工学ビジョンシンポジウム：2017年9月22日
「原料多様化・低炭素化時代の化学産業の将来像」
プログラム
・原料多様化時代の革新的化学プロセスの展望
・低炭素化時代の化学産業における石油の役割
・原料多様化、低炭素化時代における旭化成の研究開発

石油学会
新エネルギー部会講演会：2017年9月28日（木）
「低炭素社会の実現に向けて～国内外の情勢からCO₂有効利用の革新技術まで～」
プログラム
・アジア/世界エネルギーアウトルック - 不確実性の時代と技術への期待 -
・気候変動をめぐる国際情勢について
・地球温暖化対策におけるイノベーションの役割
・太陽エネルギー変換と人工光合成技術の意義と将来展望
・水素キャリアを指向したCO₂水素化触媒の開発
・CCSU技術としての地中貯留CO₂の微生物によるメタン変換の可能性
・CO₂化学的転換利用の現状と今後
触媒学会
バイオマス変換触媒研究会講演会：2018年1月18日（木）
プログラム
・担持金属ナノ粒子触媒を用いた高効率脱水素芳香環形成反応の開発
・酸化セリウムと有機化合物から成る新規塩基触媒の開発
・白金サブナノ粒子触媒の精密合成
・二酸化炭素を有用物質へと変換する均一系錯体触媒反応の開発
・5、6族金属酸化物の構造多様性に基づく新触媒機能構築
6. 研究会の検討結果
第1回〜第6回研究会での主な議論を以下に示す。

6.1 第1回 ボトルネック課題研究会（2017年7月5日）での主な議論
（1）CO₂変換過程で多量のエネルギーが必要とされることについて
・CO₂から電気化学的にCOを製造するには膨大な電力量が必要。
・CO₂を回収して利用する場合、大気圧で放出されたCO₂を回収するため、CO₂利用（反応）のためには大容量において圧縮が必要となり、圧縮のためのエネルギー消費が大きい。しかし、CCUでは、CO₂の液化を必要とするCCSほど大きなエネルギーは必要ではない。

（2）既存技術との比較でコスト面の課題を克服できる見込みはあるか
・現在の石油の価格を考えると、CCU由来の燃料が価格競争力を持つには相当に安価再生可能エネルギーが必要。石油により求められるという事実上の燃料、または今後の原油価格と比較したときに、アルカリ電解による電気分解水素の例で言えば、電気代が4円/kWh程度以下となる必要がある。これには1万円〜2万円/m²のモジュールコストで太陽電池ができないと無理がある。世界では7円/kWhが実現しているが、日本で実現可能か。
・2030年には九州では太陽光発電で大規模に余るのではないかと言われている。
・投入するエネルギーの価格が問題であり、カーボンプライシングというインセンティブが出てくれれば、相殺して経済的なメリットが出てくる。そうでない限り、現在のような燃料、電力価格の状況ではCO₂還元は非常に厳しい。
・資本主義の日本では設備の減価償却がコストに含まれるため、最初からCCUのための設備を作るたとえ減価償却コストが高くなってしまう。インドや中国ではそういう発想がないため、どんどん作れる。そのため、始めは商売になるコンベンショナルなプロセスの設備で設備の償却を行い、償却期間後にCCUプロセスとするような工夫が必要。

（3）副産物の利用や既存設備の活用による効率性向上
・水の電気分解で水素を製造するとき必ず酸素も発生するが、酸素は工業的に有用であり経済性の改善につながる。例えば酸化・燃焼を起こすプロセスでは空気よりも酸素あるいは酸素富化空気を用いた方が効率が改善する。
（4）CO₂を何に転換するのが最も有用か（キーとなる物質は何か）
・CCUとして燃料、化成品のどちらを目指すのか
・CO₂を燃料として利用するのであれば、C₁のメタンで十分であり、多くのエネルギーを
投入してより高エネルギーの燃料にするのは意味があるのか、疑問あり。・今後、再エネ
の進化・拡大等により電気代が劇的に下がる可能性もあり、メタンにとどめず、本当
にメタンが良いのかそれともCの数を増やすことが良いのかもっと議論していただきたい（事
務局）
・エネルギーは燃やすこと、電気として使えることが目的であり、そこで価格が決ま
ってしまう。化学品の場合は、そこをベースにして付加価値をあげることが出来るので儲
かる。化学原料を作り化学品を作る方が、はるかに意味がある。一番初めのスタートは、
そのような形で企業がやる気を起こすような、インセンティブが働くような形でやって
いかないといけない。
・有効利用といったときに、バイの大きさは、化学品だけでなくバランス出来るのか。燃料と
いうものもある程度持ち込まないといけないのか、燃料として使うとすぐにCO₂になっ
てしまい意味がないと評価するのか。ある程度の期間、固定化をしてくれないと定性的
には意味が薄い。価値をどう評価するのか、という考え方は整理をしておかないといけ
ないのではないか。・燃料としてCO₂を取り込む、ということも検討することも必要で
あると思う。（事務局）

・COの有用性
・COは多様な基礎化学品に変換できる原料であり、変換先を特定しなくとも、多様に使え
る。
・COは企業として有用。水素や合成ガスがあれば、いくらでも何かに変換出来る。ただし、
投入エネルギー、コストが問題になる。
・CO₂の還元では、キサ、CO、アセトアルデヒド、メタノール、メタンなど
が出来るが、メタンは別として、CO以外はみな水溶液であり、希薄な水溶液となる。こ
れらを工業的に濃縮するために膨大なエネルギーを投入しなければならない。COのみが
気体であり、CO₂との分離はそれほど困難なことではない。CO₂を還元し、唯一工業的
に使用可能のはCOである。
・天然ガスとCO₂で合成ガスを作る技術について、GTL技術は確立しているので合成ガス
さえできればその先の技術はある。ただし、合成ガスを作る段階で高いコストがかかる。
また、高温にするためCO₂排出につながる。
・COの使用について、基本的には技術的な方法論は確立している。化学原料として使うの
か、燃料で使うのか。燃料で使用すると、また排出することになり、せっかくカーボン
ポジティブで減らしているのに意味がないことになる。
メタノールの有用性
・過去の国家プロジェクトにおいては、1980年代はオイルショックの後で代替燃料としてメタノールが非常に注目をされていた。クリーン燃料であるということから、メタノールが注目されていた。自動車のディーゼルの燃料として使う。メタノールを中心として、いろいろなものに波及できる。

(5) どのような手法（技術）を用いるのが有望か
・CO₂還元剤として何を用いるか
・キーとなるCO₂の還元剤について調査するべきではないか？
・CO₂排出源の調査と還元剤をどこからもってくるのかの調査を、早い段階で議論の基本に持っていく方が良いと思う。

水素供給源に関して
・人工光合成か電力を使った電解か。エネルギー変換効率で考えると、太陽電池+電解の方がよい。
・人工光合成 vs 太陽光発電は、エネルギー変換効率で出すと常と太陽電池が勝つが、エネルギー変換効率は土地の広さが効いてくる。変換効率が半分でも、土地が広くて倍の土地が使える場合もある。それぞれの技術の将来性として、現在のステージや伸びしろを考慮して、kg 当たりで水素を安く作れるのはどちらになりそうかということがポイントになる。
・人工光合成を考える際、CO₂を一度に固定するというストーリーからそもそも関連していった、ということを前のプロジェクトから考えるべきであった。まず作るべきなのは、2 電子還元、いきなり 4 電子還元ではなく、一番少ない2 電子還元で水素と酸素を作るとしない限りは、技術的に考えて答えにならないはずである。ポトルネックといった場合は、そこを考えるべきではないかと思う。
・水分解については水さえあれば場所は選ばないが、できた水素の貯蔵および輸送を考えるとコストがかかることで、できるだけ地産・地消が望ましい。特に太陽光で行う場合は、出来た水素を遠くへ輸送するということは適当ではない。
・CO₂の還元でどんなものを還元剤にするか、というところで水素、電子を直接的に使うという仕分けがあり、さらにメタンから引き抜くなど、なにか利用出来るものから水素を引き抜く、他に何かあるのか。と思う。
（メタンの部分酸化）
・C-H 結合を分離する反応、例えばメタンの場合、CH₄ + 1/2O₂ ⇌ CO + 2H₂ であり発熱反応であるから、もっと低い温度で起きてもよいはずが、C-H 結合の活性化に 800〜1000 という高いエネルギーが必要で、ものすごく設備費がかかる。これが例えば500 くらいの反応温度で、改質ないしメタノール合成が出来て、後ろの方の燃料ないしケミカルを
つなぐパスが出来るならば、発熱反応ものが利用できるので、はるかにコストも安くなる。したがって、技術的にこのような C-H 結合の切断を低温でやることが、技術的にポトルネックになっている。そこは、世界中で誰も解決していない。
・世界的に活発な研究開発・論文が出てきている。
・非常に高いエネルギーのものを、いかに触媒によって低いエネルギーで行い、また全部を酸化すると全て CO2 になってしまうため、部分酸化の形で C-H 結合を活性化するという研究も始めていている。CO2 の有効利用の話ではあるが、一部 C-H の活性化のポトルネックを解決すると、CO2 から流れるという、繋がりやすくなるという点がある。
・メタンモノオキシナーゼのようなものを固体触媒として作れるかが論文として始めてある。

(6) 産業利用可能な CO2 排出源について
・CCU に使うのに理想的な CO2 源の特定が必要ではないか？現状の CO2 インフラ（規模、分野、場所）の調査を入れてはどうか。CO2 対策により、今後入手先の CO2 が減ることも考えられる。産業界が必要とする CO2 のスペック（不純物の濃度等）についてもご意見いただきたい（事務局）
・最初にどの変換技術に持ち込むか、その時の制約条件は何か、を知りたい。産業界の CO2 アウト側と、技術シーズの側でどのような制約条件があるかを整理し、突合せで整理していく必要がある。
・どのくらいの量の CO2 を使用するか、使ってくるのか。CO2 を減らした、ということは、どのくらいのものが必要か。
・CO2 の還元に使える CO2 発生源は限定される。CO2 還元は、CO2 の発生源もしくは還元場所に近いところで行う必要がある。この場所と、太陽光利用の適地は必ずしも一致しないため、CO2 還元を太陽光利用で行うことが適当であるかどうかは疑問である。一方で、その他の再生可能エネルギーを用いる場合は、CO2 の発生場所や還元生成物を利用するのに最適の場所で行えば良い。

(7) 過去の国プロ・民間プロジェクトで取り組まれていないか
・JST 事業の ACT-C では、CO2 を還元する研究は全 51 課題のうちの 3 分の 1 くらいの課題数である。

(8) CO2 燃換先の物質として CO2 削減効果が大きいものは何か
・燃料として使うとすぐに CO2 になってしまう意味がないと評価するのか。ある程度の期間、固定化してくれないと定性的には意味が薄い。価値をどう評価するのか、という考え方は整理をしておかないといけないのでないか。
(9) CO₂ 転換で逆に CO₂ を排出してしまうようなことはあるか
・天然ガスと CO₂ で合成ガスを作る技術について、高温にするため CO₂ 排出につながる。

(10) CO₂ の水への難溶解性
・CO₂ は水に溶けにくいため、水系での CO₂ 還元は得策ではない。
・水素の還元電位が低いため、水中で反応させ、水素の還元を抑制しつつ CO₂ を反応させることが重要であり、そのためには CO₂ が水中に溶解していることが鍵。ただし、CO₂ の水に対する溶解度は DMF などで比して小さく、溶解度が CO₂ 還元反応の律速となる可能性がある。

(11) 水溶液中における CO₂ 還元反応の課題
・水素発生反応が競合するか、優先である。ただし、触媒を適切に表面加工することや触媒の工夫により、水中でも水素発生無く CO の選択的生成が可能。
・触媒が水に不溶の場合、不均一触媒系とする必要がある。
・CO₂ の溶解度が、DMF などの有機溶媒と比べて一桁以上小さい。CO₂ は DMF やアセトニトリルなどの有機溶媒と比較して、水中にたくさんの溶けない。

(12) その他の話題
・過去の国ブロの教訓で目立ったのは、経済性の詰めの甘さと未開発要素に依存するリスク（材料や生物の探索が 1 つでも必要なロジックの場合に致命的）回避が重要。
・日本で CO₂ 排出量を CCS で 4 億トン削减しようとしたときのコストは年間 1.2 兆円規模となるが、これを新規産業（例えば CCU 産業）の利益でまかなうという考え方もある。その場合、利益率 5% として 20 兆円産業が必要となる。トヨタの売り上げ規模の産業を賑わす必要がある。経済的なロードマップがあるべきではないか。
・CO₂ 有効利用の推進にはカーボンプライシングなどのインセンティブが必要では無いか？
・産業インフラとして CO₂ を活用するものが出来上がり、CO₂ を濃縮、貯蔵、メタンと組み合わせる。その後に段階的にソーラー水素が入ってきてより大きな効果が生まれる、というようにストーリーを作っているかなければならない。
・CO₂ 利用促進に関して、インセンティブ付けなどヨーロッパの政策について勉強してみてほしい。彼らは明らかに技術ではなく、政策でやっている。やるのであれば政策論は避けられないし、どのようにやれば良いかということは、非常に参考になると思う。
・日本として、このような技術を持って世界に出て行くという視点で考えるべきである。
6.2 第2回ポトルネック課題研究会（2017年8月10日）での主な議論

（1）メタンを利用した水素製造に関して
（メタン熱分解）
・固体の炭素が副生するのみで CCS の必要が無い、反応温度が677-700度程度など、非常に
画期的な技術である。チャレンジングかつ、やりがいのある課題であると思う。
・触媒と炭素の分離方法が課題。基礎研究レベルでは可能だが、大プロセス化はできてい
ない。
・BASF も取り組んでいるが、彼らはメタンからアセチレンにする技術を 100 年くらい前
から持っており、その技術の発展線上で出来るので、短期間で技術開発するであろう。
・CCS が社会的な重要性を確立できなかった場合、メタンの熱分解で C と H2 に変えられ
るのでであれば有用な技術となるので、これをポトルネック課題に入れておいた方が良い。
（メタン部分酸化）
・非常に安い水素が出てくるまで、メタンを水素源とすることは現実的にあり得る。ただ
し、（現在多用されている スチームリフォーミングは）吸熱反応なので、酸素を使う（発
熱反応とする）ことが一つの解決策になるかもしれない。
・メタンの部分酸化反応が500〜600℃でできるようになれば世界が変わる。

（2）コストや CO2削減効果の評価基準の統一が必要
・再生可能エネルギーを使うもののコストは、設備の減価償却費への依存度が高い。償却
期間の基準を統一してコストを比較できるようにすべきである。
・作製した物質中の炭素の CO2 起源割合に関する評価基準を持っておく必要がある。技術
の革新性やコストだけではその技術を評価できない。
・CO2の排出量は LCA で評価を統一しないと技術の優位性を比較できない。
（事務局）
・パリ協定に向けて長期戦略を国全体として考える時期だと思える。LCA は重要なテーマ
であり、関連省庁が議論している認識している。

（3）日本の化学業界は CEFIC のレポートのように化学生産プロセスに電気をもっと利用
することできるか？
・ドイツでは産業用の電気は競争力が落ちないように安く設定されているからできている。
日本の電力会社の高い電気代では難しい。国が世界基準となる電気代を設定して、化学
プロセスへの利用推進に取り組む必要がある。
・ヨーロッパでは風力による再生可能電力が普及にあり、時間的・季節的に電気が余って
いるので、化学プロセスへの活用が盛ん。日本とは状況が異なる。

95
(4) 余剰水素等の産業界を跨いだ融通について
・例えば鉄鋼メーカーで発生した余剰水素を化学メーカーで CO₂の還元に活用すれば、トータルとして CO₂の削減につながるが、実態は発生したメーカー内で消費しているようだ。
・エネルギー効率を上げる天然ガスを利用し、トータルのバランスで検討することはできるし、利益も出るであろう。しかし、実際に対話を始めると難しい。何か外的な力が働きないとやりにくいのが現状であろう。

(5) CO₂からメタノールの直接製造について
・CO₂を原料とするメタノール合成反応は、現行の合成ガス（CO/H₂）を用いる反応と比較して水素が1分子余計に必要であり、さらに平衡転化率が低いため、コスト高になることは避けられない。しかし、自然エネルギー由来の水素を用いることができれば、CO₂の絶対量を減らすことが出来るので画期的な技術となる。
・今後の課題は、コスト削減の観点から、低温高活性かつ長寿命の触媒の開発（液相プロセス）と原料確保のための膜による CO₂分離技術の開発である。また、CO₂削減の観点からの課題は、自然エネルギー由来の水素獲得である。
・CO₂からのメタノール製造技術の工業化には、CO₂クレジットの上昇と市場の許容が必要である。
・地球温暖化の状況を鑑みると、将来的にはある程度のコスト高は許容される社会が来る予想される。

(6) トータルの熱マネジメントが必要
・吸熱反応と発熱反応を組み合わせ、どのようにして熱を合理的に使用するかが重要である。メタンからメタノールを合成する反応は、メタンを活性化して CO を催する反応だけが吸熱反応であり、他の反応は、最終のオレフィンを作ることまで全て発熱反応である。どのような反応を、どのくらいの温度で行えば廃熱をうまく利用できるか、という視点で考える必要がある。これは、世の中でまだ誰もやっていない。

(7) 「サイエンス」に立ち返る
・石油の寿命がある 50 年となっているが、例えば自動車の内燃機関が次第に無くなっていく電気化に変わると、石油の利用は燃料から化学的なものにシフトするので、化学原料が50年でなくなることはないであろう。
・石油を使った化学プロセスとしてステームクラッカーが確立されている中で、(CO₂を利用したプロセスの確立)何十年かかるかという世界であるということは、皆が認識している。
2050年を目指し、地道な努力がいる。より深いサイエンスのところでの議論（理論的な限界の把握）がもう少し必要なのでないか。
・それぞれの人が考えるボトルネックをまとめることで、サイエンスの限界はここまでだが、ここまでは行くはずであろう、という議論ができる。

(8) その他技術課題
・CO₂から直接エタノール合成する技術も日本として取り組むべき技術。ただ、生成したエタノールは水溶液になるため、蒸留を行うことになり大量のエネルギーが必要。低エネルギーで取り出すプロセスを構築することが重要である。
・水溶性化合物は分離に問題があり、工業的プロセスに乗せるには難しいと思われる。
・重要のは、用いる反応をどうするかである。発熱反応はエネルギー効率が良く、具体的には酸化反応、水素還元反応がある。水素還元反応では自然エネルギー由来水素が考えられる。温暖な反応条件とは、酵素、発酵反応がある。廃棄物の観点から脱水反応は環境に優しい。ここで出来た水は、灌漑に使用可能であろうと考える。
・
(9) 欲しい情報
・ヨーロッパは、再生可能エネルギーに関しては政策で一人勝ちしたと言われている。また、ヨーロッパは CCU に関しても同じようなことをやりたいと言っている。再生可能エネルギーの時 Eu としての国家戦略が、おそらく CCU でも採用されるだろう。再生可能エネルギー、バイオエネルギー、バイオエナジーの間に、ヨーロッパがどのような戦略をってきたかという調査をし、それをベースに、日本として何が出来るのか、ヨーロッパはこのようなことを考えそうだが、ということを調査すると、とても良い情報になると思う。
・CCU でどのくらい CO₂が有効に利用されるかを、ある程度示す必要がある。現在国内の化学工業から CO₂が約 1 億トン、世界では約 20 億トン排出されていると見ているが、このうち化学原料の半分が CO₂起源で利用できるのであれば、10 億トンレベルで CO₂削減に貢献できる。さらに減らせるということになるので、算して CCU が大切な技術であることを示してほしい。

(10) 化学産業界のモチベーションアップのために
・新しい合成法が出来た、ということだけでは困る。言い過ぎかもしれないが、化学産業としてどれだけの CO₂が現実的に減らせるか、これがオプションであるとすれば何をどうすれば出来そうか、ということ示せば、かなり誇得力があると思う。
・経済的には既存のものが良いのは決まっている。CO₂の問題があるから貢献するということである。その貢献を化学産業が負担するのか否かである。出来ない場合は、政府がどこまで支援するか、という話になる。大まかなイメージが湧かないとい難しい。
・CO₂由来の炭素を多く取り込んだ化学品を、例えばそれが 6 割だったとしても 100% CO₂由来とみなして良いということが可能であれば、買う方は化石資源由来の化学品よりも
そちらを買うであろうと考え、企業のモチベーションはアップする。このような仕組みがあれば良い。

（事務局）
本研究会では CCU 普及のための制度を決定することは出来ないが、担当省庁、担当部局で連携を図っていくための材料を提供して行きたいと思う。
6.3 第 3 回 ボトルネック課題研究会（2017年9月7日）での主な議論
(1) 自動車ゼロ CO₂、ゼロエミッション化
トヨタ自動車(株)杉山氏に「自動車ゼロ CO₂、ゼロエミッション化」について、概要およ
び内燃機関・燃料の研究開発に期待する事などを説明いただいた。
・IEA による世界のパワートレーン販売数の予測では、燃料電池自動車 (FCV)、電気自動車
(BEV) の台数は伸びる。しかし、2040 年において 75% 近い車が内燃機関を積んで世の中を
走っていると予想されている。
・トヨタは、FCV や BEV などゼロエミッション、ゼロ CO₂ の車を増やすのと同時に、イ
ンフラの整った液体燃料を用いる内燃機関に電動化を組み合わせた HV、PHV の拡大を行って
ていく計画を進めている。
・全てのパワートレーンに対して、ゼロエミッション、ゼロ CO₂ を目指して研究開発を進
めていく。
・内燃機関を用いた HV、PHV に対しても、段階的に CO₂ を減らし、最終的にはゼロエミ
ッション、ゼロ CO₂ になる研究が必要であると考えている。
・走行時のゼロエミッション、ゼロ CO₂ だけではなく、製造時からのゼロエミッション、
ゼロ CO₂ を考える事が重要である。
・燃料技術と内燃機関技術を組み合わせることで、低エミッション、低 CO₂ が出来ないか
という基礎検討を始め、その可能性が見えてきた。
・どのような社会を作るかの目標を共有し、燃料と内燃機関の双方から、技術開発する事
が重要となる。また、オープンで日本の英知を結集できる産官学での検討が適している
と考えている。

(意見など)
・産業界からアカデミアに対して、エンジンとしての燃料性能はこういうものであるとい
う情報があれば、研究も進みやすい。
・CO₂ フリー燃料といえば、バイオ燃料も検討されており、CO₂ を直接原料として燃料を作
る場合と比較検討することが必要。

(2) GTL 実証事業について
JXTG エネルギー(株)田中氏に日本 GTL 技術組合で実施した実証プラントの概要につい
て、説明いただいた。
・GTL（Gas to Liquid）とは、天然ガスから合成ガス（水素と一酸化炭素の混合ガス）を
作り、これを F-T 合成して液体燃料とし、さらに目的とする製品へアップグレードする、
3 段階のプロセス（合成ガス製造工程、FT 合成工程、アップグレーディング工程）の総
称である。
・CH₄ 部分酸化...CO₂ が副反応で大量に発生する。
・自己熱改質・水蒸気改質で3対1のガスを作り、CH₄部分酸化でCOを補う。部分酸化は発熱反応であるが、相当量のCO₂が副生物として生成される。
・メタン改質合成ガス製造（反応温度1000〜1080℃）は、O₂が必要であり、莫大な電力が必要となる。
・炭酸ガス/水蒸気改質（CO₂-SMR）・水蒸気改質とメタンドライリフォーミングの組合せ。吸熱反応でありCO₂を排出する。しかし、CO₂を多量に含む天然ガス田に適用する事を目的としている。
CO₂-SMRは、CO₂を大量に排出するが、ATRより良い。
メタンとCO₂が残ったままスチーム混合を反応管（反応温度900℃）で行って、合成ガスを生成する。

（ドライリフォーミングの問題点）
・高温で、メタン分解によるカーボン析出が起こる
・触媒より後ろの熟交の近辺で望ましくないCO不均衡が起こる。解決方法として、不利な温度条件の箇所を急冷する。
・反応管のスケールアップが困難なため、触媒交換をどのようにするかが問題。

（FT合成の問題点）
・触媒は高い転化率・高い連鎖成長確率との両立が求められるが、触媒の機械的強度要素（長期にわたる耐摩耗性などの安定性）も大きな問題。
・触媒性能を最大限に引き出す反応場が必要である。反応温度を安定させる除熱システム、生成ワックスから循環触媒を分離する技術開発が必要である。
（製品化・事業化について）
・合成油製造を目的とするが、狙いの灯石油が固まりやすいため、一旦ワックスまでCをつなげてから、水素化して目的物を作る。石油化学原料のナフサも3割くらい出てくる。
・GTL油はサルファゼロ、アロマゼロ、高セタン値で売られていたが、現実的には石油もサルファゼロとなり、アロマゼロはあまり要求されなくなり、セタン値も必要以上にはならないという話となり、あまりプレミアム性が認められなかった。
・事業化のポイントは、原料のガス価格が安いこと、原油価格が高いこと、CAPEXが安い時に出来ること等の条件が整うことである。さらにプラント建設地のインフラ整備・労働力の問題がある。

（意見など）
・仮に合成ガスを回収したCO₂や再生可能エネルギーから作ることができればメタンの回収による合成ガス生成時に出てくるCO₂の問題は解消できる。
・燃料需要の変化等の社会情勢の変化を踏まえると、少し低い連鎖成長確率の下で直接目
的物を作るという考えもあるかもしれない。
・現状ではメタンの C-H 結合を切るために 900°以上の熱が必要であり、CO₂排出となって
てしまう。部分酸化も古い技術のままだである。これがはるかに低いエネルギーで結合を
分解できるとメタン改質が価値を持つようになる。
・CO₂を工場から回収し、自然エネルギーでメタノールにし、メタノール経由の MTG で合
成ガスを経由しない方法など、実現すると良い。

（3）二酸化炭素を用いた化学物質製造における重要技術
　アイシーラボ代表室井氏に触媒を中心に CO₂からの合成について説明を戴いた。
・CO₂の化学変換利用技術（メタノール合成）
・CO₂から燃料の合成
・CO₂から化学品の合成（C₂-C₄炭化水素、水素還元、芳香族の合成、アクリル酸合成）
・CO₂の化学変換のための水素製造技術（メタン分解、再生可能エネルギーによる水素製造）
・CO₂から古生菌によるエタノールの合成

（意見など）
・CO₂が直接芳香族と反応しアクリル酸や安息香酸合成が実現すると良い。含酸素化合物
は作りやすいので、このような研究はもっと行うべき。
・バイオプロセスとケミカルプロセスは、大量に製造するときはケミカルプロセスで行う
という選択がなされるかもしれない。
・触媒開発として、マイクロリアクタを活用し、表面構造等を計算科学に考慮するとい
う開発手法にシフトしていくのではないか。
6.4 第4回ポトルネック課題研究会（2017年11月20日）での主な議論
(1) 天然ガスからの合成ガス製造及びCCUに関する取組に関して

天然ガス改質からの合成ガスは、燃料・合成樹脂・医薬品など様々な合成品を作る原料になっている。

現在の天然ガス経由合成ガス製造法は吸熱反応がベースのリフォーミングがメインであり、如何に熱を供給するかで、外部供給、内部供給の二通りある。前者は一般的にはスチームリフォーミング法と呼ばれH2/CO比が3以上と範囲が限定される。外部加熱方式であるが千代田化成が開発したCO2リフォーミング法（CT-CO2AR®）はCO2を資源化しカーボン析出反応を押さえて広範囲なH2/CO比（0.5〜3.0）の合成ガスの製造が可能で、様々な化学品原料を効率的に製造するのに適している。外部加熱型方式は、反応器容量に制約があり、超大型のものは経済的に厳しいなる。

後者の内部供給式は、ATRに代表されるように酸素を空気の中で原料メタンの一部を燃焼させて後段のリフォーミング反応に必要な熱を供給するものであり、高圧反応状態になる。H2/CO比は2〜3の範囲で、外部加熱の必要が無くコンパクトで大規模製造向けである。酸素が必要であるため、大規模になればなるほどその製造設備も大きくなり、そこに経済性の課題がある。

・部分酸化法は、若干の発熱反応であり、理想的な合成ガス製造法と言える。無触媒の部分酸化は高圧力・高温が必要であるが、千代田化成が開発した直接接触部分酸化法（D-CPOX）は、全部触媒反応にてCH4+1/2O2→CO+2H2を行わせる直接ルートである。H2/CO比は約1.8〜2.1と比較的狭く、また、反応の制御も高度な技術を要する。局所的な酸化反応によりホットスポットが出来ることもあり、最初の非常に短い時間で均一に反応させる難しさがある。例えば経験のようなフォーム触媒を使用し、桶のような反応器により短時間で反応させる工夫など触媒の形状や反応器の形式の技術課題に取り組んでいる。開発が完了すれば反応器がコンパクトになるという利点があり、大規模製造向けも考えられる。酸素製造設備が必要であることはATRと同様の課題を有する。

・D-CPOXを最初に実証装置まで行ったのはConocoPhillipsであるが、その後、商用化が実施されたとの話は聞いていない。

GTL製造を目的とした場合のATRとD-CPOXの経済性を比較すると、ATRは反応器前にプレヒーターが必要となるが、プロセス後段のFT合成の圧力が高いためコンプレッサは不要となる。一方、D-CPOXはヒーターが必要で装置は非常にコンパクトになると、FT合成に必要な圧力にするためsyngas compressorを必要とする。そのため、両者の経済性の差が極端には良くならず、プラントトータルでもATRと同程度または若干優位となった。しかし、後段のFT合成系が低圧になればコンプレッサが不要となり、D-CPOXの経済性が大きく上がる可能性がある。

開発中のプロセスとしては、光触媒水分解水素製造にも着目している。
・JST のさきがけ研究として、水とトルエンから MCH を直接製造する光触媒の開発が実施されている。MCH は水素キャリアとして運ばれ消費地に到達水素される事になるが、現地ではわずかな水素を作る必要がないという点で画期的で注目している。
水電解による直接 MCH 合成は、SIP にて横浜国立大学も実施している。この辺りもフォーラーシャンから将来的に展開できるのではないか。
・CO₂リフォーミングは、CO₂を有効に資源化できる良い技術とは思うが、熱を入れるために CO₂が同時に排出され、何もならないよりも CO₂が増加するということになり、抜本的な CCU 技術と言えるかという点で疑問が残る。
・トータル CO₂排出量削減のため、富山大学の樫先生らによる CO₂リフォーミングとメタン部分酸化の組み合わせのような、各種組み合わせ技術による最適化は千代田化工としても重要項目として検討している。

(水素キャリアについて)
・クリーンな水素キャリアとしてトルエン・MCH(メチルシクロヘキサン)系を考えている。理由は、エネルギー密度が高く、長期的に安定性に優れ、既存インフラが活用できる、利用条件がマイルドで安全性が高く、コスト的にも安くてできる点などが挙げられる。本系は脱水素で熱を加えなくてはならないところが課題であり、いかに低熱源を利用するこ
とが出来るかがポイントである。
・水素の持つエネルギーの 1/3 くらいの熱を入れなければならないという課題があり、現状では温度レベルとしては約 350 °Cが必要となる。このくらいの廃熱は簡単には見つからない。200 °C 近辺の熱が使えるようになればハードルは一気に下がるため、触媒や反応場の工夫によって反応レベルを 200 °C 近辺まで下げる仕事を検討している。

(水素コストについて)
・2015−2040 年までの水素製造価格を比較すると、再生可能エネルギーベースの場合は、現状では非常に高価であることが分かる。化石燃料由来は原料の天然ガスに大きく依存するため将来的に原料価格が高くなり水素コストも高くなると考えられる。石炭と再生
エネルギー次第では、CCS 付き石炭と再生可能エネルギー水電解が同レベルとなる可能性もある。
・千代田化工が化石燃料及び自然エネルギーからの水素コストを簡易的に試算した結果、太陽光で製造した場合は、海外では 5 円/kWh で 40 数円/Nm³H₂であるが、現在の日本の 20 円/kWh 程度の太陽光の場合、百数十円/Nm³H₂ と高くなってしまう。安い天然ガス(4$US/MMBTU)由来であれば 10 円/Nm³以下、安い再生可能エネルギー(3 円/kWh)であれば 30 円/Nm³程度まで下げられる。ただし、日本に運ぶ場合は + ¥を考慮しなくてはならない。
（その他）
・国内回収 CO₂の化学的固定化利用（CCU）について、回収 CO₂の利用方法はケミカル、セメント等の炭酸塩や燃料（メタンやメタノール等）としてあるが、これ以外のことはなかなか量的にも難しいと想定される。川井造船の水素と CO₂からメタンを合成する Sabatier 反応には興味を持っているが、千代田化工としてはまだ実施していない。再エネ由来のアンモニアの合成についても興味はある。

（2）NEDO・人工光合成プロジェクトの紹介及び CO₂排出削減量の試算について
・人工光合成プロジェクトは 2012 年からの 10 年プロジェクトである。可視光水分解触媒を用い太陽光で水を分解し、分子ふるいで水素をふるい出す。さらに排出 CO₂から化学原料を作る。民間企業とアカデミアが共同しているのは、世界でここだけであろう。
・可視光水分解の最終目標は、太陽光変換効率 10%である。2016 年の 3%目標を前倒しで達成した。現在は、7%達成に向けて奮闘中である。
・日本では 4.3 kg/m²の水素、34.4 kg/m²の酸素が発生する。赤道直下のサウジアラビアでは、7.9 kg/m²の水素、63.2 kg/m²の酸素が発生する。2030 年に予測される、石油 70 $/バレルに相当するメタン価格を天然ガスにした場合の水素価格は 350 円/kgであり、酸素は 10 円/kgになる。効率向上に、どれだけ単位面積あたりに安価な光触媒を作るかを考えていかなくてはならない。
既存の世界共通のメタノール合成プロセスは、250 MPa、8 MPa、収率50%程度である。反応分離型メタノール合成プロセスでは、分離膜を入れることで、230 MPa、3 MPa、収率90%程度になる。世界標準のMTO技術では、メタノールからオレフィンを合成すると、発生する水が高温蒸気となり触媒を劣化させる。そのため、450℃以下でしか反応させず、触媒量が数百トンとなる。リアクターの大きさが直径5〜8 m、高さ10 mほどになり、これを短い触媒層で行うためには温度を上げる必要がある。550℃程度まで温度を上げて、少ない触媒量で実施することが重要となる。
・オレフィン製造では、約700℃、70%程度のスチーム環境下において、三菱ケミカルが開発した新触媒は、同じスチーム処理前後での活性がほとんど落ちていない。

バイオマスの場合は燃焼部分をカウントしないため、製造部分だけになる。人工光合成もバイオマスと同様な考え方が出来るので、LCA的にはかなり有利になる。
・酸素を作る技術は非常に難しく、多くの会社は液体酸素を作っているが、化学プロセスや燃料に関して言うと液化する必要はない。プロセス中で空気から直接酸素を取る方法でも良く、水から分離した酸素の利用でも良い。この点が大きなボトルネックになる。
・MTOのオレフィン収率90%として100万トン/年のCH₄を製造した場合、1 kg当たりのエチレン、プロピレン、ブテンを製造するのに、LCAとして2.03 kgのCO₂が固定化できる。これが人工光合成の理想形となる。一方ナフサクラッカーから1 kgのエチレンとプロピレンとブテンを製造する場合、現状では5.84 kgのCO₂を排出する。
・シェールガス革命により、エチレン製造にナフサよりはエタンを使用する方がCO₂を約2〜3割減らすことが出来るため、これよりも少ないCO₂排出を実現しなくてはいけない。一方で北米のシェールエタンクラッカーの製造コストは日本の5割以下であり、アメリカから安価なポリエチレンが輸入されると、太刀打ちがいかなくなる。
・シェールガスが原料となれば安価な原料が調達できる、ということは一つの考え方としても正しいと考えるが、CO₂排出量が増加するかどうか、ということは別途議論が必要である。
・エネルギーを使用することだけを考えると高温で回せば良いということになると、ケミカルを作るという面では簡単にはいかない。吸熱反応を酸化発熱反応で上手く相殺してプロセスを回すような技術の組み合わせがどこまでできるか、ということになる。
・現状LCAの基本的な考え方は、ケミカルの原料および生成物を作る工程で低温暖化が可能となれば、高級材から一般材までへの機器材料のグレードダウン、圧縮能力の減少など、建設費の大きな削減につながる。これは現状LCAの基本的な考え方に含まれない場合が多いが、この部分は非常に大きいはずである。これはCO₂排出量の大きな起源であるから、低温化は意味があると考える。
・人工光合成に求められる必要条件は、CO₂排出量からのものと収益性からのものがある。
電気代は全て製造コストになり、トータルで見ると10年間で製造する水素の売価よりもはるかに高価になる。したがって安全機器で、エネルギーをなるべく使わないプロセスで製造することに意味があり、低温化は価値があるといえる。

・既存の技術で、メタンから合成ガス（メタン合成）にTMTOのLCA試算では、ナフサクラッカーよりもCO₂排出量が大きくなった。ただしこの技術が面倒のは、CO₂と水素が結合する場合と、COと水素が結合する場合の互換性が高いことであり、将来的にメタンのケミストリーとCO₂のケミストリーが同じカテゴリに入るということである。その中で、少なくともナフサクラッカーが同程度あるいはそれより少し下のCO₂排出量となれば、この技術を使う方向で考えることが出来るのではないか。

・LCAは非常に大切であり、ICEFでもCO₂排出量は、どこもきちんと見積もっていない。車にかまむところでは、材料を作るところからは誰もきちんと見積もっていない。日本がトータルでCO₂がどれだけ少ないかということが言えると、世界に先駆けることが出来る。

(3) 東レリサーチセンターによる調査の途中結果報告

・電子をたくさん必要とするように積みあげているのは、ガスを扱うからコンプレッサが大量に必要であり、その部分があるために避けたい状況となっている。反応自体を低温化させるなどが実現できれば、少し下げる余地がある。

・今回はコストというよりもCO₂排出量で算出しているが、電気代の見通しを基に試算する方が現実的ではないか、というような見解は大切である。

・今回は一つの試算であり、どこまで再生可能エネルギー由来の電気を入れるかである。ケースバイケースであるが、熱マネジメントが進んだケースを想定し発熱反応または発熱が消えそうなものについては、蒸気を使ったプロセスでのCO₂排出量を一律1/2とするという計算を行っている。

・プラントの中だけでの熱マネジメントで半減は少し過激だと思うが、もう少し具体的にどのくらい数値のある試算のベースとなる数値が出てくるか、という検討は産総研でもしてみたい。情報があれば是非いただきたい。

・従来の蒸気、熱、電気を考慮して、メタン水素分解水素・CO₂以外はナフサクラッカーの方がCO₂排出量は少ないという試算であるが、主観的に判断せずに与えられたデータを基にした結果を示しており、この結果としてCCUがどこまで意味があるか、ということを検討すべきであろう。

・究極的には再生可能エネルギーから得られた水素を使いCCUに転換していくということが必要であり、最終的にはこれを目指さなくてはならないが、すぐにはこのプロセスは成り立たない。仮にC1化学の一部がCO₂由来の将来の合成プロセスとほとんど同じであれば、もとのとくCO₂を排出しないようなプロセスをもって通過的にC1化学を高め、人工光合成が追い付いた時にそれを利用するということであろうが、これについて意見
をいただきたい。メタン由来か、または他に由来する水素かでどこまで CO₂ 削減が可能か、ということも合わせて追及していくべきであろう。

・2050 年に CO₂ の 8 割削減を目標に掲げるならば、産業界の CO₂排出を容認する代わりに電力は全て CO₂ を出さない、あるいは産業界で削減する分について何か創エネルギーすることしか描きようがないであろうことは、産総研として試算している。その中で CO₂ の削減量だけを見て CCU は意味がないということだけにはしたくない。現実的課題として何が出てくるかということは、本研究会で議論していただきたい。

・化石資源を使う場合と CO₂ から作るということは違うから、LCA という観点からは比較になっておらず、要素として入れなければならないものはまだある。今回の途中経過が独り歩きすることはない。引き続きブラッシュアップ出来る箇所については、ブラッシュアップする。

(4) 今後の検討の方向性
以下の観点が必要である。

・市場性を有する事
・CO₂削減にボテンシャルがある事
・経済性を確保する事
メタン価格変動の影響
・技術レベルと時間軸を考慮する
・個別技術を超えた共通基盤技術の検討
メタンを活用した水素製造（熱分解、部分酸化、ドライリフォーミングに着目）
メタノール合成（反応温度の低温化、水素源としての活用）
キー物質からの CCU を考える
世界の CO₂ 削減に日本企業が貢献する技術開発

（意見など）
・プロジェクト開始にかけは、物質をある程度絞り込み、その物質の競争力をどのように出すか、物質そのものが差別化できるわけではないので、コスト競争力の観点からどのように要素技術が必要なのか、ということで論議すべきであろう。
・生産性の問題、CO₂ 削減の可能性、コスト(LCA、コストの概算)の 3 つに対してどれかどのくらい寄与できるかを決められれば、ストーリーは決まってくるであろう。
・注目物質の一つとして水素がある。
・C1 化学の一つであるメタンの酸化カップリングも重要な技術だが、技術の飛躍を期待させる新たな発見等が発表されていない。
・メタンがからもう科学技術は、重要であるので、市場の大きさ、経済性をみながら研究開発の価値を判断すべきである。
6.5 第5回ボトルネック課題研究会（2018年1月11日）での主な議論
（1）バイオマスを利用した化学品プロセスのLife Cycle Assessment（LCA）評価について
産業技術総合研究所 片岡氏からバイオマスを利用した化学品プロセスのLife Cycle Assessment（LCA）評価についてご説明いただいた。

Life Cycle Assessment（LCA）の定義
「対象とする製品を生み出す資源の採掘から素材製造、生産だけでなく、製品の使用・廃棄までライフサイクル全体を考慮し、資源消費量や排出物量を計量するとともに、その環境への影響を評価する手法」
指標：地球温暖化係数(GWP：Global Warming Potential)、温室効果ガス（GHG：Greenhouse Gas）

LCAの範囲
化学品では、プロセスだけで評価することが多い。プロセスの一部と、「ゆりかごから墓場まで」のCO₂排出量と逆転することがある。シナリオ設定により値に幅が出てしまうので、注意が必要である。

PE合成、PPの合成についてLCA結果の紹介
• CO₂削減効果はあるが、コスト競争力を併せ持つケースは限られている。
• 適切な条件設定が必要である。（土地利用や原料の合成方法などの条件など）
• 製造する化合物によっては、削減効果が少ないものもあるため適切なものを選ばなくてはならない。
• バイオマス原料は集積化・スケールアップが困難である。輸送コストが大きくなる。

2050年の炭素循環について
• 排出されるCO₂をいかに減らしていくかが課題である。
• バイオマスはスケールメリットが小さいため、分散型で実施することが良い。
• CO₂大規模発生源では、メタンや水素を使用してCO₂還元する方法が必要であろう。
• 全てのCO₂発生量を正しく評価することは困難なためLCAのデータを取り込むながらプロセス設計を行い、モデル化してアセスメントを行うサイクルを実施しなければ、大規模なCO₂削減量の効果は得られないであろう。

（意見など）
• バイオマスのボトルネックはバイオマスの生産性である。どれだけ早い成長速度があるか、どのようなバイオマスを作るかに本質的な問題がある。現在の生産性をベースに描くシナリオではなく、生産性1%が5%に上がれば、どのようになるのかを考えることを
最初に行うべきであろう。

今はスタンドアローンでのバイオマスプラントを前提とし、例えばエタンクラッカーと結合して原料の CO₂が削減できる場合など、さまざまなシナリオを考えていくべきと思う。

CCU として競争力のあるものとしてエチレン、酢酸、酢酸エチルを提案した。他の候補もシナリオを正しく分析する必要はある。これらは、比較的分離しやすいものの、反応効率が良く無駄が少ないもの、比較的競争力のあるもの、CO₂削減するものである。舎み分けが重要である。経済的に考えても CO₂の観点からも炭素骨格がある程度できたものを上手く活用した方が明らかに良い。

（2）ICEF CCU ロードマップについて

エネルギー総合工学研究所 黒沢氏に、ICEF CCU ロードマップについてご講演いただいた。

ICEF について

ICEF は、気候変動の解決に向けてのエネルギー・環境分野のイノベーションの重要性を、世界の産官学のリーダーが議論し、協力を促進するためのプラットフォームであり年 1 回実施している。

CO₂から化成品を作るためのエネルギーについて

熱や電気エネルギーを外部から与える必要がある。

触媒や選択性の向上など課題は多い。

CaCO₃はエネルギーレベルが CO₂よりもかなり低いため、基本的にはエネルギーが非常に少なくて出来るであろうと思われる。

ICEF CO₂利用ロードマップのまとめ

CO₂利用としての製品群と実用化時期は、コンクリートは短期で、化成品は中期で、炭素材料はかなり時間がかかる。

研究開発ニーズは、理論分析、触媒、単位操作およびプロセス設計、既存の物質があるので素材をどのように変えていくかといったシナリオが必要である。

LCA は必須であり、特に燃料については CO₂に加え、エネルギーが本当にプラスになるかを検討する必要がある。

政策支援としては、経済的なインセンティブの設定、利用の義務化、CO₂や水素のインフラ、認証と試験、製品ラべリングなどが挙げられる。

（意見など）

ヨーロッパは、セメントへの CO₂利用について昔からかなり積極的である。

セメントにおける CO₂利用は、プロセス由来の CO₂排出（主原料の石灰石が熟分解する際に排出される CO₂）を差し引けるということにおいて意味がある。
セメント製造や養生には、固めるときに CO₂を入れ、建設の速度を速めることは日本でも有効であろうと考える。
2005年に IPCC が出した CCS の特別報告書の中には、ミネラルカーボネーションという章があり、概念そのものは当初より言われていた話である。
CO₂利用の適切な使い道を国や産官が考える必要がある。

(3) 東レリサーチ調査概要（途中報告）
キーコ合物としてメタノールが有望と考えられる。
最大の技術課題は、「CO₂排出が少なく、安価な水素の調達」である。
今回の調査では、以下のプロセスでオレフィン合成した場合の CO₂削減効果を概算した。

合成ガス経由でメタノールを合成しオレフィン合成するプロセス
- 水電解水素 + CO₂
- メタン熱分解水素 + CO₂
- 水蒸気改質 + DRM
- メタン部分酸化

直接メタノール合成しオレフィン合成するプロセス
- メタン熱分解水素 + CO₂
- 水電解水素 + CO₂
- 水蒸気改質水素 + CO₂

調査範囲：原料の製造から製品の製造までで、製品の消費および燃焼は含まない。
前 提：装置建設時、輸送、副生成物の処理は含まない。全行程を同じサイトで実施と仮定。日本の現状のエネルギー原単位を使用。

有識者ヒアリングのコメントを紹介した。

costのコスト高の要因について説明した。

(4) 取りまとめの方向性（案）
CO₂排出の大幅削減の必要性があり、再エネの導入等が必要である。
あらゆる化成品につながる合成ガス（CO + H₂）、メタノール（CH₃OH）、エタノール（C₂H₅OH）が有望であるとした。
CO₂から上記有望物質を生成するためには、安価な水素調達が一番の課題である。
CO₂を排出しないという観点からは、再生可能エネルギー（人工光合成、水電解）由来の水素製造は、エネルギー転換効率等に起因する高コストが課題であり、期間でのブレーキスルーは困難である。ただし、再生可能エネルギー由来の水素の調達は必須であ
ると考える。

\(*\) そのためには、人工光合成および水電解の研究を強力に推し進める必要がある。
\(*\) コンプレッサなしで後段の反応に必要な高圧水素が得られるシステムの開発が望まれる。
\(*\) CO2 の調達が重要であり、CO2 の分離回収技術は投入エネルギーの低減が見込める膜分離技術や、低濃度かつ他の成分も含まれているような排ガスのようなものからでも CO2 を直接還元できる技術開発が望まれる。

\(*\) 再エネルギーフ水素が安価で手に入るまでは、メタンを利用した C1 化学による化成品生産基盤確立が重要である。

\(*\) 研究開発の方向性としては、発熱反応・廃熱利用と吸熱反応の熱バランスを考慮した統合システム技術のプロセス化を行わなくてはならない。

\(*\) CO2 を原料とするプロセスでは、あらゆる方法（熱、電気、光など）を使用し CO2 排出量を削減しなくてはならない。一方、LCA ベースでの CO2 排出量に関する統一されたルールなどは存在しないため、これら取り組みを研究開発と同時に行いつつ世の中に示していくことが重要。

\(*\) 抜本的な CO2 排出削減に資する有用技術の個別課題は、個々に研究開発を進めることが必要である。

\(*\) その他の共通基盤技術の課題として、近年盛んに研究されている計算科学（Material Informatics）やロボティクスを活用した高効率な触媒開発や、オペランド計測などを活用したプロトンや電子の動きの評価を行う必要がある。

\(*\) 化学プロセスを抜本的に変えるには、既存の CCU 設備を新たに投資しなくてはならないかもしれない。投資採算性を上げ、利益を見通せるような公的な設備投資の支援策等が必要となる。

（意見など）

とりまとめの方向

\(*\) 最後のとりまとめの方向が幅広いので、メッセージとして、いくつかを取り上げた方が良いと思う。

\(*\) 今回の TRC の検討結果からは、化学物質を作る場合は、再エネ電気や人工光合成を使わないと CCU のメリットは簡単には出ないことが分かった。

\(*\) メタンの熱分解は重要である。さらに低温にすることが可能となれば、廃熱をたくさん
利用できることになり、新たな展開ができると思う。

変動再エネの電気の利用
変動再エネで余った電気を用いて作った水素を CCU で使うという研究開発が進んでいるが、DME など自動車燃料を作ったとして、水素で使えるものをわざわざ反応エネルギーの 3 割位を減らして燃料として使用することに意味があるのかも疑問である。変動再エネの電気は余るので CCU に使えばよいということについては、もう少し議論が必要である。
まず、再生可能エネルギーの電気代をどのレベルまで下げなくてはいけないかが重要であり、そのあとに CO2 の議論がなされるべきである。
CO2 の抜本的削減を図るための設備投資や国の支援はとても重要なことだ。

メタンについて
メタンを使う合理性についてもう少し理屈付けをした方良い。
シェールガス由来のメタンは、石油に対して当面長い期間安価であるという構図がある。
これを使えば、明らかに水素は石油よりもはるかに安く出来る。
メタンを掘り起こしている際に、かなりの量の CO2 が出ていることが問題である。

その他
ランザテック社が古細菌を用い、H2 無しで CO2 をそのままにエタノールにする技術を開発しており、商業化プラントが中国で稼働始めている。これは CCU の一つの方法と考えられる。
副生したカーボンの高付加値化利用技術と安全性の確認が課題である。
政府調達やカーボンプライシングなどは、規制的要素が重要であるという認識はある一方で、日本で展開した場合は日本国民にも負担にもなり、本研究会では決められない。選択肢の一つとしてはある。
CO2 削減を大規模にやるには CCS が重要である。CCS をやる際の運転資金として、CCU が利益を出せば良いという考え方もある。CCS は儲からないが、CCU はその分を補填するという形で、両方合わせて CO2 を削減するという視点があっても良い。
6.6 第 6 回 ボトルネック課題研究会（2018 年 2 月 28 日）での主な議論

(1) 調査結果について

ごこの前までの研究会で報告していない 2 テーマ（CO₂を原料としたエタノール合成、革新的反応分離技術の研究開発動向）について、報告した。

(以下、コメント)

ごこの前、C1化学ではメタノールから炭素 1 個増やすという技術の研究開発をやっていたが、MTO などメタノールから先の化合物に転換する技術については調査しないのか。（メタノールから先の技術が非常に大切であるということは間違いないが、調査予算の制約もあり、ある程度技術があるものは今回の調査対象から外している。）

バイオエタノールは CO₂削減には役立っているが、カーボンニュートラルには行かないいない。LCA で CO₂削減が厳密に計算されている。（ブラジルのサトウキビのケースで CO₂排出量削減率 60% 等）

CO₂から作れたエタノール製造は、CO₂をエタノールにする部分ではLCA的な CO₂削減効果が出ると思う。

エタノール経由でオレフィンを作る場合の LCA 分析も必要と考えている。様々な用途、化学品は必要となるので、それらについて一貫した LCAの必要があると認識している。

膜分離技術の開発は長く行われているが、進歩の状況が分かり難い。対象もターゲットも違うが、分離コスト、プロセスエネルギー等が少しずつ進歩していることが示と良い。（調査の中で、できる範囲で取りまとめることとする。）

(2) 電解還元に必要な電力量について

CO₂の電解還元による電力量試算、CO₂と水素から日本のオレフィン(エチレン、プロピレン)を作って場合に必要な電力量について示した。また、仮に水素を全て水電解から得た場合に必要な電力量の試算法についても示した。相当大きな電力量となる。

また、試算によると 1 トンの CO₂を分離回収するのに必要なエネルギー消費量は、CO₂排出量に換算すると 12% 程度となり、思ったよりも少ないという印象である。

(以下、コメント)

日本の CO₂の排出量の 1%を電解で CO とすると、410 億 kWh の電力が必要で、太陽光発電では 170km²(東京都の面積の 8%)が必要とのことだが、イメージをわかないので今試算してみたところ、日本の太陽光発電 1kW で年間発電量 1,100kWh として、太陽光発電では 37GW 相当となる。2030 年の日本のベストミックスの太陽光導入量は、64GW である。日本全体の太陽光発電所の 6 割を使用することに相当する。

再生可能エネルギーとして、太陽光エネルギー発電で計算されているが、コストが高い。

風力は相対的に安いので、日本では立地制約はあるが風力発電を導入し、さらに風力発電と水電解を組み合わせるような方策も考えるべきである。

CEFIC(欧州化学工業協会)/ DECHEMA(ドイツ化学工学会)が、昨年 7 月に欧州の化学産
業の原料を低炭素化するにはどのようにしたら良いかということのシナリオを作成した。欧州全体で想定される 2050 年のエチレン、プロピレン等の半分を CO₂から製造するよう置き換え、その変換に水電解水素を利用する場合、2050 年想定の欧州の再生可能エネルギーの 55％が必要となる、という評価となっていた。これは再生可能エネルギーの電力利用としてバランスが取れていないという結果であった。

(3) エタンについて

この研究会では、CO₂からの還元は水素がネックになるので、すぐに実現しないであろうということであった。必ずしも CO₂削減につながるわけではないが、メタンに着目するということがあり議論が行われてきた。

一方、シェールガス革命後、エタンのクラッキングでオレフィン製造するということが起きており、これが競合技術になるであろう。競合技術となるエタンの可能性について、ここでは取り上げた。

(以下、コメント)

シェールガス中の主成分はメタンであるので、エタンのみを使い続けるよりもメタンを使うことは合理性がある。

メタンは燃料用途が大半であり、長期的な観点からはメタンは安価に供給されるはずである。

特に北米では火力発電でメタンが中心となっていくであろう。そうなるとメタンは大量普及するので、それに伴って化学産業も安価メタンを使い続けるという構図が一番描きやすいであろう。

トータルでみてメタン、エタン、エタノール、太陽光の全てに互換性がある技術としてまとまりのあるような技術体系を見つけるということが重要である。

メタン技術は、地域ごとにケースバイケースで有意義な技術となる。

エタンからエチレンを経てプロピレンを作るには CO₂を排出しながら行う必要がある。

また芳香族にするためには、さらにエチレンから CO₂を排出しながら作る必要があるため、エチレンだけではなく、いわゆる化学品 8 品目をバランスよく作ろうとした時に、はたしてエタンクラッカーだけで良いか、ということは考えなくてはならない。

エタンとメタンの選択は、実は難しい。地域の選択を念頭に入れ、オルタナティブに技術を持てるようにすべきである。どれか一つに選択肢を決めるのはリスクである。

今までのようにメタンをベースにという考え方もあって然るべきであるが、世界市場を見た場合、同時に選択肢としてエタンを持ち出すことは非常に重要である。

(4) コストについて

コストが問題となるが、具体的な目標値が見つけにくい。日化協が概算してみて、水素
価格 10 円/Nm³ を切り、化石資源由来と同等にならないと産業として使うことが難しいのではないかとも示された。

CCU の議論をするのであれば、償却費を含めたコストを意識する必要がある。化学産業では 7~10 年で償却できるようにならないと投資が難しい。

CCO₂ 削減率と、その時の最小となる CO₂ 削減コストの関係について解析し、どの時点でどのような CCU をすべきか、産業への効果はどうなるのか、などのイメージを持って CCU を CO₂ 削減策の一つとして検討することも良いのではないか。

(5) CCU について

CCO₂ 削減量に焦点をあてると、CCU はなかなか役に立たない技術にしか映らない、という状況が長く続いた。今回このような議論が出来る機会があったことは良かったと思う。

CCU 技術の縁取り方が今回の重要な視点であり、我々として CCU のポテンシャルを化成品という目で見てどうあるのか、というものも試行した結果を示した。エチレン、プロピレンの流れから見るとそれなりのポテンシャルがあるが、これで全てが解決するわけではない。

化成品の立場で CCU のポテンシャルを考えると、重要になるのは水素である。エネルギーとしての水素は様々な切り口があり、これと合わせて考えることが必要がある。ポテンシャルのあるところの視点から見ると、そこで必要な技術は非常に重要なものとなる。

日本で CCS が出来ないのであれば、その代わりとして発電所から出てくるものを CCU に利用するということで、CCU は、CCS の代替手段となる。

CCU につなぐための互換性のある技術を作る、ということである。「つながらないという認識を持つ」のではなく、「炭素循環につながる技術にすべき」である。

CO₂ を原料にして大量に使うためには燃料用途となる。しかし、燃料ではコストが合わない可能性が高いので化学品、化学品も基礎炭化物と機能性炭化物となる。その中で大量に CO₂ を原料にするならば、基礎炭化物をターゲットにせざるを得ない。だが、基礎炭化物は安いために経済性が合わない、というような繰り返しとなっている。そのような状況を踏まえると、まず機能化学品への適用を意識して、利益の出る体系を作り、それによって基礎炭化物では出にくい利益を補完するという考え方もある。

エチレンやプロピレンを生産するには CO₂ 還元で 5000 万トンくらい上手く使える、オレフィン、メタノール、尿素を同じようにやると世界の CO₂ 排出量の数％くらいは CCU で賄うことができる、ということは CCU が大事なものであるというメッセージになる。

大量に CCU が普及する時には、CO₂ を排出しているのが前提ではなく、もっとないとから CO₂ を回収して使うという視点で CO₂ を化学原料として当たり前に利用する、という旗振りを政策的にもしてもらいたい。

CCU により出来た製品の普及には、プライシングと、入札条件に CCU による製品でなければならない等を入れる形で推進する方策が必要である。
既存のナフサクラッカーに対して、これから作るべき技術は CO₂排出量が少ないことが大前提であるのは当然である。このような技術がコストに見合うかという問題はあるが、カーボンプライシングという観点で将来的に地球温暖化問題が大きくなってきた場合に、このような問題を無視できなくなり、カーボンプライシングはより高くなるのではないかと思う。

現状の技術を使用した場合の試算にとどまらず、マーケットは世界であり、これだけのことをやれば世界に入っていけるという視点で考えた方が、未来志向になると思う。

海外から持ってくるという視点ではなく、海外へ技術を持っていくという視点で将来事業を考えるべきである。

(6) LCA について
LCA を精度高くやろうとするには、研究前にデータがなければ算出することが出来ないといった現実がある。研究開発で触媒を開発する人、反応プロセスを開発する人、LCA を専門にする人とは領域が違うので、連携をとりながら研究開発をしていくような、研究開発や技術開発を進めるような仕組み作りが必要である。

業界として CCU を進める上で個々の技術や、LCA の人をどのように育てていくかといった課題を皆さんで考えていく必要がある。

研究会やワークショップを含め、LCA をきちんと見っていくべきだという議論が進められているのは良ことと思う。

(7) その他
Material Informatics について：ある程度使えるようにしていくためには、データの質は考える必要がある。それが出来るようになったからといって、ボトルネック課題の根幹を成すような技術の触媒（特に固体触媒）が、MI で出来るのは限らないと思う。均一系触媒で、ということは学術的な観点ではかなり進んでいる。学術的な観点で計算科学として次に取り組みたいと考えているのは、固体触媒である。計算機の上で固体触媒に関して何が起きているかを再現しようとしているのが、最先端の取り組もうとしている学術分野である。長期的にめざすべき方向性として有り得ると思う。

ギ酸について：エネルギー経路として使用すると、分解して水素と CO₂になってしまう。このような分離の問題が非常に難しくなる。人工光合成でギ酸も出来るが、均一系になってしまう沸点も非常に近いというところから分離が難しい。ギ酸は均一系の触媒系で実施されており、まだ基盤研究の域である。エネルギーキャリアという視点で考えたときには、ギ酸、メタノール、メタンといった様々なものを考えていく必要があると考える。表現方法は再検討した方が良い。

これまで触媒の研究で留ままり、プロセス開発に至らない場合が多かったかもしれない。
様々な反応系や触媒材料を開発し、様々な反応系や触媒材料を開発し、エンジニアリングとしてどのようにプロセスに持っていくかが、次のステップに行く上で重要である。

以上
本報告書は、内閣府の平成29年度科学技術イノベーション創造
推進委託事業委託費による委託業務として、株式会社東レリサーチ
センターが実施した、平成29年度「エネルギー・環境分野における
有望技術の技術課題に関する包括的調査」の成果を取りまとめた
ものです。
従って、本報告書の著作権は、内閣府に帰属しており、本報告書の
全部又は一部の無断複製等の行為は、法律で認められた時を除き、
著作権の侵害にあたるので、これらの利用行為を行うときは、内閣府
の承認手続きが必要です。