開発目標

カテゴリ	重点課題	目標性能 (対「京」比)	目標性能によって可能となる計算例と想定できる アウトカム	計算の種類	想定 プログラム
エネルギー問題	⑤ エネルギーの高効 率な創出、変換・貯 蔵、利用の新規基盤 技術の開発	40倍	量子力学に基づく700原子規模の20ケースのシミュレーションにより、光化学反応のメカニズムを解明し、光エネルギー変換ための材料候補物質のスクリーニングが可能に。(「京」では、数百原子程度の数ケースまで。)	多重ケース処理型計算	NTChem
	⑥ 革新的クリーンエネ ルギーシステムの実用 化	20倍	有限要素法に基づき、複雑な形状の構造物まわりの流体(例えば、ターボ機械の熱流動など)を1兆要素規模で計算することにより、熱発生率、冷却・排気損失、ノッキング、サイクル変動等の予測の正確な評価が可能。 (「京」では、数百億要素規模で予測技術の確立まで。)	大規模単一問題型計算	FFB
産業競争力 の強化	⑦ 次世代の産業を支える新機能デバイス・ 高性能材料の創成	35倍	量子力学的第一原理計算に基づき、10万原子のシミュレーションを10ケース程度行うことにより、複数の異種物質から構成されるナノ界面を解明。(「京」では、ナノ界面の一部を切り出した部分系での理解。)	多重ケース処理型計算	RSDFT
	⑧ 近未来型ものづくりを先導する革新的設計・製造プロセスの開発	15倍	有限要素法に基づき複雑な形状の構造解析(例えば、ターボ機械全体)を10~20億要素規模で時空間的に予測する計算を大量に行うことにより、最適な全体設計を実現。(「京」では、個別のシミュレータまで。)	多重ケース処理型計算	Adventure
基礎科学の 発展	⑨ 宇宙の基本法則と進化の解明	50倍	クォークを192 ⁴ 個の格子上の場として計算することにより、素粒子から宇宙全体にわたる物質創成史を解明。(「京」では、96 ⁴ 格子上で、星、銀河、巨大ブラックホールなど、宇宙における諸階層の構造形成過程まで。) 計算量は「京」時代の計算内容の60倍程度。	大規模単一問題型計算	CCS-QCD

注:

- 表中の記載内容は、新構成の総演算性能に基づき、概念設計レベルにおける性能予測を行ったもの。
- 今後は、本暫定版目標性能に基づく基本設計を進め、重点課題実施機関決定後、速やかに再見直しを行い当該実施機関の提案に基づき修正。これをもって最終的な開発目標とする。