超低消費電力型光エレクトロニクス実装システム技術開発

今後の技術開発予算の見通しについて(予定)

年度	H24	H25	H26	H27	H28	H29	H30	H31	H32	Н33
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
金額 総額 約291億円	約60 億円	約30 億円	約30 億円	約28 億円	約28 億円	約25 億円	約25 億円	約25 億円	約20 億円	約20 億円

高効率ガスタービン実証事業費補助金 平成24年度概算要求額 25.1億円(新規)

資源エネルギー庁 電力基盤整備課 03-3501-1749

事業の内容

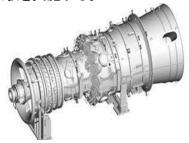
事業の概要・目的

〇省エネルギー及びCO2削減の観点から、電力産業用高効率ガスタービンの実用化技術開発のため信頼性向上等を目的とした実証試験を実施する。

- ①1700°C級ガスタービンの実用化に必要な更なる信頼性の向上を目的とした最先端要素技術を適用したシステムの実証等を実施することにより、大容量機(出力40万kW程度(コンバインド出力60万kW程度))の高効率化(送電端効率57%HHV^{※1}以上)を実現する。
- ②高湿分空気利用ガスタービン(AHAT^{*2})の実用化に必要な更なる信頼性向上を目的とした技術開発を行うとともに、実証機によるシステム性能、燃料多様性等の検証を行い、中小容量機(出力10~20万kW程度)の高効率化(送電端効率51%HHV以上)を実現する。
- ※1 HHV:高位発熱量単位
- ※2 AHAT: Advanced Humid Air Turbine

条件(対象者、対象行為、補助率等)

事業イメージ

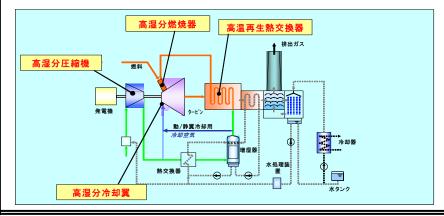

①1700°C級ガスタービン

先行開発した1700°C級ガスタービンを用い、57%HHVを実現するための「超高性能化先端要素技術」と、「超高温化設計」を支える革新基礎技術を開発し、更なる信頼性向上及び実証機による実証試験を実施する。

【超高性能化先端要素技術】

高機能クリアランス制御構造、高性能シール・ 高性能軸受

【超高温化設計を支える革新基礎技術】 先進製造技術、超高温強度技術、先進 制御技術、高精度・高機能検査技術、高性 能ダンパ・振動制御技術、特殊計測技術



②高湿分空気利用ガスタービン(AHAT)

これまで開発した技術の更なる信頼性向上に向けて、新たな要素技術開発及び実証機による実証試験を実施する。

【新たな要素技術】

スケールアップ技術、燃料多様化技術、カーボンニュートラル技術、高性能高 温再生熱交換技術

事業の年度展開

年度	H24	H25	H26	H27	H28	H29	H30	H31	H32
	2012	2013	2014	2015	2016	2017	2018	2019	2020
補助金額(億円、見込み)	25.1	24.0	20.7	25.5	43.9	104.6	51.0	124.2	116.7
技術開発									
		個別要素排 個別信賴							
実証試験									
				実証機設計実証機製造・建設				実証試験・検証	