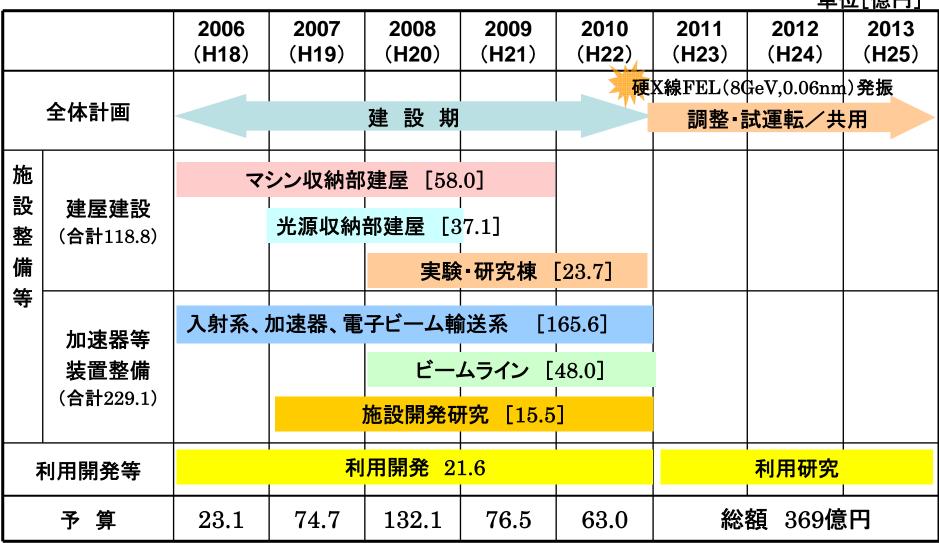
X線自由電子レーザー事前評価における主な指摘事項等


推進すべきとされた主たる理由:

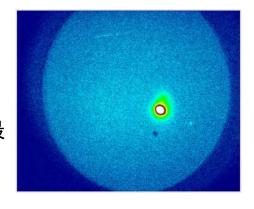
- <u>波長0.1ナノメートル以下のX線領域</u>において、<u>100フェムト秒以下の極短パルス</u>及び良 **A** 好な干渉性を実現し、ピーク輝度がSPring-8の10億倍を上回るXFELを、小型・低コストの 設備で外国と同等以上の性能を実現しようというもので、革新的な成果・社会経済効果が見 込まれる。
- B 指摘事項1. 科学技術に対する貢献と社会・経済への波及効果に 関する、国民への分かりやすい説明の努力
- C 指摘事項2. プロトタイプ機の活用とその成果の還元
- D 指摘事項3. 利用研究の充実と速やかな推進
- E 指摘事項4. 運営・評価組織の体制整備

XFEL年次計画(平成18年事前評価時)

単位[億円] 2006 2007 2008 2009 2011 2010 2012 2013 (H18) (H19)(H20)(H21)(H22)(H23)(H24)(H25)硬X線FEL(8GeV,0.06nm)発振 全体計画 建設期 調整・試運転/共用 施 光源収納建屋 [95.1] 建屋建設 設 (合計131.4) 実験ホール、研究棟 [36.3] 棃 備 入射系、加速器、電子ビーム輸送系 [165.6] 等 加速器等 ビームライン [48.0] 装置整備 共通機器 [2.0] (合計221.1) 施設開発研究 [5.5] 利用開発 4.5/年 利用研究 利用開発等 32.9 総額 355.5億円 予算 74.9 91.0 84.5 91.8

単位[億円]

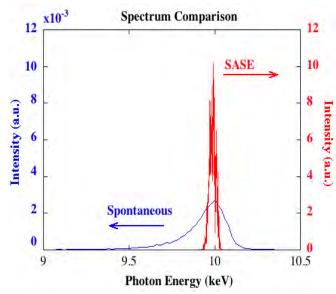
(平成19年度予算ベース)


XFEL年次計画(実績ベース)

		2006 (H18)	2007 (H19)	2008 (H20)	2009 (H21)	2010 (H22)	2011 (H23)	2012 (H24)	2013 (H25)
全体計画				設期			硬X線FF	L (8GeV,0	.063nm)発
	土 本 四 四 一 一 一 一 一 一 一 一						調整・試	運転/共用	
		線	型加速器収納部	部建屋					
施	本体整備 (合計243)		電子	アビーム輸送	系トンネル				
設			入射器、加速器	と 器、電子ビー	-ム輸送系				
整			電子ビーノ	4制御系					
備等			ビームライ	イン収納部類	建屋				
(合	共用施設 整備 (合計115)			Ľ-	ームライン				
(伯詰のいぬ				共同実験棟	• 共同研究核	Į			
8.				施設開:	発研究				
1				(X)	EL/SPring-8相互 中央監視システ	[利用実験基盤、 ム増強 ※)			
利用開発等		3.8	5.7	利用研究開発	2.7	2.7			
当初予算[億円]		23.1	74.7	110.0	98.7	16.5	総	額 388億	円
 補正予算[億円]			33.0	30.0	1.9		(利用開多	後等にかかる と358億円)	費用を除く
(※補正予算[億円])					(20.2)				

平成23年6月7日16時10分 世界最短波長(0.12nm)となるX線レーザーの発振に成功

2月末のビーム運転開始からわずか3カ月での達成


米LCLSで2年かかった調整を短期間に効率良く行うために、プロトタイプ機SCSS試験加速器から得た知見を十二分に活用し、ハードウエア、ソフトウエアの最適設計と綿密な調整計画の構築に努めた。

レーザー発振の記録

6/7 0.12nm 6/10 0.10nm 7/13 0.08nm 10/28 0.063nm

	設計基本パラメータ	平成23年12月現在の状況
電子ビームエネルギー	8GeV	8.3GeV
波長	最短で0.06nm	0.063nm (10/28) <i>更に短波長化を進める</i>
ピーク輝度	10 ³² photons/sec/mrad ² /mm ² / 0.1% bandwidth	10 ³⁴ photons/sec/mrad ² /mm ² / 0.1% bandwidth
パルス長	100 fs以下	10fs
ビーム径	$0.2~\text{mm}\phi$ (波長 0.06nm 、試料位置)	$0.2 \text{ mm } \phi$
コヒーレント性	100%(SP8の1000倍)	60ミクロン領域でほぼ 100%

世界のX線自由電子レーザー開発計画とSACLAの状況

A関連資料

#388億円(他施設と比較し最小コスト) 0.12nmで発振) 0.12nmで発振)		欧州 <u>DESY</u> : Deutsches Elektronen-Synchrotron (ドイツ電子シンクロトロン研究所) European X-ray Free Electron Laser	日本 理化学研究所&高輝度光科学研究センター SACLA <u>S</u> Pring-8 <u>A</u> ngstrom <u>C</u> ompact Free Electron <u>La</u> ser	米国 <u>SLAC</u> National Accelerator Laboratory: <u>St</u> anford <u>L</u> inear <u>A</u> ccelerator <u>C</u> enter (SLAC国立加速器研究所) LCLS: Liniac Coherent Light Source
(平成23年10月に2.06nmを発信) (2009年4月に0.15nmで発振、同年12月 (最も短い) (最も短い) (12nmで発振) (15億ドル以上(約492億円) (1ユーロ 110円換算) 約388億円(他施設と比較し最小コスト) 6.15億ドル以上(約492億円) (1ドル 80円換算) (1ドル 80円換算) (1ドル 80円換算) 2015年は用開始予定 2015年供用開始予定 2012年3月硬X線で供用開始予定 ・2009年10月軟X線で供用開始・2010年10月硬X線で供用開始・2010年10月硬X線で供用開始・2010年10月硬X線で供用開始・2010年10月で表線で供用開始・3項である波長変更が簡便にできる・繰り返し周波数が低い ・利用実験に必須である波長変更に手間がかかる ・繰り返し周波数が低い ・第3世代大型放射光施設と共存する 世界唯一の放射光研究拠点 ・DOEの研究施設整備計画においてプライン イ第3位 ・既存施設の活用により、3億ドル以上を節	全長	約3.4km	約0.7km(最もコンパクト)	約4km(XFEL施設分としては約2km)
(1ユーロ 110円換算) (1ドル 80円換算) (1ドル 80円換算) (1ドル 80円換算) (2015年コミッショニング開始予定	発振波長	0.1nm-6nm	(平成23年10月に0.06nmを発信)	(2009年4月に0.15nmで発振、同年12月に
長所・短所・短所・短所・短所・短所・短所・地域である波長変更に手間がかかる ・最も短い波長が得られ、利用実験に必須である波長変更に手間がかかる ・最も早い施設完成と供用開始・利用実験に必須である波長変更に手間がかかる。繰り返し周波数が低い その他・EU12ヶ国共同プロジェクト・プロトタイプ機にて、波長4.1nmのレーザー発振に成功 ・第3世代大型放射光施設と共存する世界唯一の放射光研究拠点 ・DOEの研究施設整備計画においてプラインイ第3位・既存施設の活用により、3億ドル以上を節点を開き、3億・	総コスト		約388億円(他施設と比較し最小コスト)	
・短所 ・利用実験に必須である波長変更に手間がかかる 須である波長変更が簡便にできる・繰り返し周波数が低い ・利用実験に必須である波長変更に手間がかる。繰り返し周波数が低い。 その他 ・EU12ヶ国共同プロジェクト・プロトタイプ機にて、波長4.1nmのレーザー発振に成功 ・第3世代大型放射光施設と共存する世界唯一の放射光研究拠点 ・DOEの研究施設整備計画においてプラインイ第3位・既存施設の活用により、3億ドル以上を節息を変更に手間がある。繰り返し周波数が低い。	運転開始		2012年3月硬X線で供用開始予定	
・プロトタイプ機にて、波長4.1nmの レーザー発振に成功 世界唯一の放射光研究拠点 ィ第3位 ・既存施設の活用により、3億ドル以上を節		・利用実験に必須である波長変更に手間が	須である波長変更が簡便にできる	・利用実験に必須である波長変更に手間がか
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	その他	・プロトタイプ機にて、波長4.1nmの レーザー発振に成功	世界唯一の放射光研究拠点	・DOEの研究施設整備計画においてプライオリティ第3位 ・既存施設の活用により、3億ドル以上を節減 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

XFELに係る情報発信の取組状況について

B関連資料

XFELプロトタイプ機見学者数(~H20まではプ 新聞掲載数(H17.4) ロトタイプ機、H21からはXFEL実機 H17.4~ H23.1)

年度	視察•見学	一般公開
H17	244人	未公開
H18	959人	1,178人
H19	855人	1,168人
H20	806人	1,831人
H21	1,653人	2,340人
H22	2,187人 8,769人(一般)	3,019人
計	15,473人	9,536人

~H23.1)

計	145件
H22	25件
H21	12件
H20	46件
H19	17件
H18	28件
H17	17件

雑誌、広報誌、DV D、TV等

H17	2件
H18	28件
H19	15件
H20	23件
H21	14件
H22	14件
計	98件
-	

(H17.10~H23.1)

計	98件
H22	14件
H21	14件
H20	23件
H19	15件
H18	28件
H17	2件

株式会社日本総合研究所にXFELの経済波 及効果について調査委託(H17.1)

- →XFELは2030年までに累計1兆円を超える 経済波及効果を生み出すことが可能
- →日本経団連など産業界にも積極的に説明

- H18.11.7 第1回XFELシンポジウム(MY PLAZA HALL) H19.10.22 第2回XFELシンポジウム(兵庫・CASTホール)
- H20.1.16 第3回XFELシンポジウム(東京・MYプラザホール)
- H20.7.1 兵庫県講演会(兵庫・兵庫県公館)
- H20.8.2 佐用町図書館にて地域お話会
- H20.8.20 「子ども霞が関見学デー」に出展(8/20-21)
- H20.9.10 VACUUM2008-第30回真空展-にポスター出展(9/10-12)
- H20.11.22 サイエンスアゴラに出展(11/22-24、日本科学未来館)
- H20.11.27 佐用町三日月中学校で出張授業
- H20.12.12 第4回XFELシンポジウム(東京国際交流館)
- H21.1.24 武庫川女子大学附属高等学校で講演会
- H21.2.18 「理化学研究所と産業界との交流会」に出展
- H21.4.26 施設公開 (XFFL 施設を初公開)
- H21.8.19 「子ども霞が関見学デー」に出展(8/19-20)
- H21.9.16 VACUUM2009-第31回真空展-にポスター出展(9/16-18)
- H21.10.31 サイエンスアゴラに出展(10/31-11/3)
- H21.11.27 第5回XFELシンポジウム(品川インターシティホール)
- H22.1.9 市民公開講座(姫路市文化会館)
- H22.1.24 SSHサイエンスフェア(神戸)
- H22.2.18 「理化学研究所と産業界との交流会」に出展
- H22.2.17 NANOTEC2010に出展(2/17-19 東京ビッグサイト)
- H22.4.11 サイエンスカフェ(大阪科学技術館)
- H22.4.29 施設公開
- H22.8.1 文科省情報ひろばに企画展示(~12/4)
- IH22.8.18 「子ども霞が関見学デー」に出展(8/18-19)
- H21.9. 1 VACUUM2010-第32回真空展-にポスター出展(9/1-3)
- H22.9.4 第6回XFELシンポジウム(梅田センタービル)
- H22.9.17 科学記者懇談会
- H22.10.15 科学論説懇談会
- H23.3.26 市民公開講座(姫路市文化センター)
- H23 12 3 第1回SACLAシンポジウム(MY PLAZA HALL)

パンフレット作成

HP作成

YouTubeに各種動画を公開

