「革新的新構造材料等技術開発」の 評価について(案)

平成 23 年 10 月 22 日 評価検討会

1. 評価対象

「革新的新構造材料等技術開発」【経済産業省】

く概要>

本プロジェクトでは、軽量化が求められている輸送機器への適用を軸に、強度、延性、靱性、制震性、耐食性、耐衝撃性等の複数の機能を同時に向上するチタン合金、炭素繊維複合材料、革新鋼板等の高性能材料の開発、異種材料の接合技術の開発等を行う。これにより、各種材料の特性を最大限活かし、軽量化による大幅燃費向上を実現する。

〈実施期間〉 平成25年度~平成34年度

<予算額>

〇概算要求額: 60.5億円(平成25年度)

○国費総額: 605億円

2. 評価検討会メンバー

 MI 100 124		_	
	奥村	直樹	総合科学技術会議議員
《座長》	上杉	邦憲	評価専門調査会専門委員
	射場	英紀	評価専門調査会専門委員
	上野	裕子	評価専門調査会専門委員
	中村	崇	評価専門調査会専門委員
招聘者	塚本	建次	昭和電工株式会社 技術顧問
	平田	好則	大阪大学大学院工学研究科マテリアル生産科学専攻
			教授
	西野	由高	株式会社日立製作所日立研究所機械研究センタ
			センタ長

(敬称略)

3. 調查·検討項目

評価検討会においては、以下の基本的な項目に加え、評価対象事案に応じて評価の視点等を具体的かつ明確化し、調査・検討を実施する。

- A. 科学技術上の意義 科学技術上の目的・意義・効果等。
- B. 社会・経済上の意義 社会・経済上の目的・意義・効果等。
- C. 国際関係上の意義 国際貢献・役割分担、国益上の意義・効果等。
- D. 計画の妥当性 目標・期間・予算・体制・人材や安全・環境面等からの妥当性。
- E. 運営等 事前評価の実施状況、評価結果の反映の仕組等。

4. 検討スケジュール

9月19日(水) 評価専門調査会

・評価検討会の設置、スケジュールの確認等

10月22日(月) 第1回 評価検討会【本日】

・ヒアリング、追加質問と評価の視点の検討

- ⇒ 追加質問事項をとりまとめ、経済産業省へ対応を 依頼
- ⇒ 評価コメントに基づき評価の論点を整理

11月8日(木) 第2回 評価検討会

- ・追加ヒアリング、評価の論点の検討
 ⇒調査検討結果のとりまとめ

11月22日(水) 評価専門調査会

・評価報告書案の検討

11 月下旬目途 総合科学技術会議本会議

・評価報告書案に基づく審議・決定

革新的新構造材料等技術開発

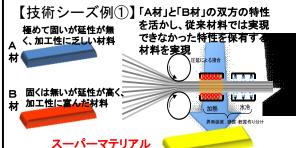
平成25年度概算要求額 60.5億円(新規)

事業の内容

事業の概要・目的

- ○我が国の製造業の高い競争力を支えるのは構造 材を中心とする部素材です。一方、構造材は使 用環境により多様な機能が要求されます。この ため、使用環境等に応じて適切に合金組成・組 織を制御する材料創製技術や、異種材料を接合 する技術、それらの材料を構造部材として適用 するための設計・加工・評価技術が重要です。
- ○本プロジェクトでは軽量化が求められている輸 送機器への適用を軸に、強度、延性、靱性、制震 性、耐食性、耐衝撃性等の複数の機能を同時に 向上するチタン合金、炭素繊維複合材料、革新鋼 板等の高性能材料の開発、異種材料の接合技術 の開発等を行います。これにより、各種材料の特 性を最大限活かし、軽量化による大幅燃費向上を 実現します。

条件(対象者、対象行為、補助率等)



事業イメージ

異材接合技術

異種材料の融合(接合化、複 合化、複層化)により、複数の 機能を同時に向上(強度、延性、 靱性、制震性、耐食性等)

【技術シーズ例②】 ツールの加圧

プローブ

マルチマテリアル化製品 の高強度・軽量接合技術

板の移動

スーパーマテリアル

超高強度、超軽量と良加工性を併せ 持つ『夢の金属材料』に!

新組成 新組織合金創製技術

新合金により、複数 の機能を同時に向上 (強度、延性、靱性、 制震性、耐食性等)

新材料特性評価技術

異種材料による接合・複合・複層部材等の評価手法の 開発と標準化

【実施体制】

- ■材料供給メーカー、材料加工メーカー、自動車メーカー、大学等、接合技術及び各材料分野においてコアとなる技術シーズを保有している 企業等が川上から川下まで参画した研究開発共同体を形成し、有機的連携を図りつつ研究開発を行う。
- ■文部科学省のプロジェクトと緊密に連携し、成果の産業化展開、産業界の課題解決の為の協力、知財財産・研究設備の活用を促進するガバニング・ボードを設置し連携する。

【技術開発予算の見通し】

年度	H25	H26	H27	H28	H29	H30	H31	H32	H33	H34	総額
十尺	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
金額(億円)	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	605.0