部材分野の技術ロードマップ(18/73)

3. 新規研究開発事業を位置付けた技術施策体系図等 技術戦略マップ2010より、

村分里	3村分野の技術ロードマップ(18/73)	户 	1 1 1	7.0.7	J (18	8/7	73)																		(4. }	環境・	エネル:	(4. 環境・エネルギー/自動車用部材)	自動車	5用部	<u>₹</u>
術番号 大項目	中区分	教	対象部位 米める機	コから かられ 動能 名 名 名 名 名 名 名 る の さ の さ れ る と の さ れ る と の を り を り を う を う を う を う を う を う を う を う	はめられる 現する高 称	出口から 求められる機能を発 現する高度節材 4 まめられ 現する高度節材 4 る機能 名称 特数概要	研究開発の方形性	2006 2007	7 2008	2009	2010	2011	2012	2013	2014	2015 21	2016 20	2017 20	2018 20	2019 2020	20 2021	11 2022	2023	2024	2025	2026	2027	2028	2029	2030	
	省エネル 軽量化・ ギー 高強度化 か CO2種	(化・車を) 度化 オ	車台・外 CFR 板 ・Ali をい	CFRP,Mg ·AI等鉄 系以外の			自動車外板用アルミ				高強度	・高耐食性	·高成形性	高強度・高耐食性・高成形性・良表面性状	*																
	城		本が	報によ	9		合金圧延板の開発	ベークハード性、	、高「値新合金の開発	金の開発																					
			÷ ≅	· 政 () () () () () () () () () (新		低廉自動車外板用ア	コスト×1.0倍	Ц	5000系合金	- SEE			6000系合金	4 H	П															
-01-01				サベド	なつで スー・光 恋 ルイー・ク 敬		ルミ合金圧延板の開発		##	機鋳造圧延技術の確立	担	П																			
				日沙木	ナープラー		自動車バンバー用ア					領並みの耐力、	耐力、延性																		
				常	G		ルミ合金神出し村の開発	學送0009	(南湖度神出	強度押出し材の開発																					
							枯渇元素低減アルミ 合金の開発				Mg, Mn,	Mg、Mn、Cuの使用30%削減合金の開発	30%副黨合3	金の開発				300	200				77			コビキタス	コピキタス合金(Al-Fe)の適用	田類の(3			
							高品質大型スラブ、 ピレットの製造技術 きなす	結晶粒径:0.5~1mm					We ICL IX	格品物後:100μm以下 面刷:製mm以下 スラブ:WI.5m×t0.5m×t5m以上	100 μm以下 以下 5m×t0.5m2	×L5m以上				福岡コ	森 昭	INCh×L5m以上	T T T								
							and the same	超音波振動付	当付加型ホッ	トトップキ	·連続鋳造等	加型ホットトップ半連続鋳造等の技術の開発	引発	既存開発	&微細化剤	既存開発&微細化剤及び高速冷却技術	却技術			П											
							広幅圧延技術の確	板幅:0.3m 圧下率:10%/パス	K				102	板幅:2m																	
							7	口線四	いールを用い	、た瀬圧下	一ルを用いた高圧下率圧延技術の開発	で開発	П																		
						*		耐力: 150MPa 仲ぴ: 20%				耐力: 200MPa 伸び: 20%	MPa 6			軽力	耐力: 250MPa 伸び: 20%														
							高強度化	高合金マグネシウダイカスト用アル	ウム合金の3 フ	ム合金の温間加工技術の開発	術の開発	時効析出	型マグネシ	時効析出型マグネシウム合金の温間加工技術の開発等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	温間加工技	1術の開発))	展仲用アルミニ										
								ミニウム合金並み	*				1	有合金並み	1 4					76	お回場の	_									
																										脈	を材段階でJ	素材段階でアルミと同等	18-		
							耐食性の向上	PE	高純度化技術の確立		(Feლ10ppm未消	無	П	L		極極	高割食性マグネシウム合金の開発	ウム合金の)開発	1	H	-	組織制御(傾	(傾斜材料的要	(編)						
								,											N.	鏡面化	鏡面仕上げ										
							表面性状の同上							最終圧	延技術技術	最終日延技術技術としての冷間圧延技術と熱処理技術の確立	間圧延技術	うと熱処理法	技術の確立	П											
				厩包装	作 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		成形性の向上(r値、	250°C LDR:2.5以上(銅の 室温での限界深紋り値)	上(類の:り値)				100°Cで輸並みの 深板り性	世みの						機械	室温で輸並みの 深紋り性										
0				2 44 Z 11	グボージボー	整量、減		結晶粒微細化、	報	制御と温間	- 日組織の制御と温間プレス技術の確立	り発立	新合金階	新合金開発、組織微細化、部品做い集合組織制御と冷間プレス技術の確立 	編化、部品	3做い集合組	機制御と冷	計削プレス表	技術の確立	П											
5				\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	イン・コンドー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー	似能	高速押出し技術の確	アルミニウム合金 の約1/10	E:				11.01	アルミニウム合金 の約1/2	金 4					アルジ	アルミニウム合金と同等	個									
				1	(金) (金)		抖	動的再結晶	10	合金開発	および金型	容易な新合金開発および金型構造の最適化	تد		静水田	静水圧押出し等を用いた量産技術の確立	刊いた量産技	技術の確立	341				9								
							市分格. 市里34. J. 60								A6I	A6000系並の銀造性	S: 10 cm			A6000	A6000系並の強度・靭性	[・勤性									
							高短度·高朝生化聚造材				動的網	1線変化を利	川用した組織	動的組織変化を利用した組織制御技術の確立	一位是	観道によ	設造による組織制御	(袋笛代,	(微細化、結晶方位)												
								250°Cで創並みの深紋り性	栗紋り性				低温 (100%	(100°C) 加工可能	ju					起火	発向工口配を										
							プレス成形技術の開発(含む金型技術)		温間ブレス	温間ブレス技術の確立	-44-		予盟プレ	・ 分間プレス技術の確立	拉		-			П											
	_	_			_							異方性を考	き慮した成形	異方性を考慮した成形シュミレーション技術の確立	ション技術	の確立				П	_		_								