米国・エネルギー省エネルギー効率・再生可能エネルギー局(DOE-EERE) 風力エネルギープログラム(Wind Energy Program)の例 | Table 2. Program Logic Model for Wind Program | | | | | |---|--|---|--|---| | Project | Large Wind Turbine
Technology | Distributed Wind
Technology | Transmission & System Integration | Technology
Acceptance | | Resources | Appropriations Industry cost sharing NWTC facilities IEA | Appropriations Industry cost sharing NWTC facilities | Appropriations State funds Partners | Appropriations State funds (energy offices) Partners | | Activities | Technology development through public-private partnerships. Supporting research and testing. Reliability and performance improvement for existing turbine technologies. Low wind speed technology development. Offshore wind and resource assessment. | Technology development
through public-private
partnerships. Supporting research and
testing. | Wind generator modeling. Wind farm data monitoring. Resource characterization. Grid operational impact analysis. Transmission and generation planning. Grid rules development. Institution building through utility partnerships. | Outreach to state-based organizations. Small wind. Institution building through utility partnerships. Support for Native American interest in wind power. Environmental and siting mitigation. Emerging applications. Resource Assessment. | | Outputs | New components, concepts and wind systems for land-based applications in Class 4 wind regimes. Basic research tools to assist industry. COE 3.6 cents/kWh in Class 4 wind by 2012. Better understanding of offshore wind energy market and technical challenges. COE 5 cents/kWh in Class 6 wind in shallow water by 2014. | By 2015 expand by five-fold the number of distributed wind turbines deployed in the U.S. market from a 2007 baseline. New components, concepts and wind systems for applications of less than 100 kW. Development of wind turbines to support midsized market applications. | Ability of wind systems to compete without disadvantage in key areas of market rules, interconnection impacts, operating strategies, and system planning. Development of new transmission to facilitate wind development. | 30 states with mature markets that support wind industry growth. Technical and outreach support widely available. Fewer barriers to large and small wind integration. | | Short-term
Outcomes
2007–2010 | The use of wind energy in
high and low resource
areas accelerates due to
their improved cost
effectiveness. | Wind turbines for
residential (1-2 kW) use
and commercial/
community applications
(100 kW and above)
enter the marketplace. | Wind becomes a participant
in defining the national
needs of emerging grid
operation and rulemaking
processes. Announcement of 3 new
transmission lines to bring
low-cost wind to urban load
centers. | 30 states achieve a level of
public awareness and policy
environment that fosters a
vibrant market for wind energy
development. | | Intermediate
Outcomes
2010–2020 | The use of wind energy as a low-cost electricity source, without financial incentives, becomes widespread as technology matures. Commercial development of shallow water technologies. Commercial wind turbine technology for transitional water depths is developed and demonstrated in offshore sites. | Distributed uses of wind
energy at all sizes
emerge as a significant
opportunity for
technology deployment
and end-users embrace
wind for a growing
number of uses. | Utilities and developers gain clear understanding of barriers to integration and know how to address them. Increased transmission implemented allowing the expanded use of wind technologies. | Public acceptance of wind technologies in rural areas, supporting local economic development. 6-8 regional wind collaborative organizations emerge and function to plan and integrate appropriately large amounts of wind energy into regional operating systems. | | Long-Term
Outcomes and
Problem
Solutions
2020 and
beyond | The percentage of energy generated from wind exceeds 10%, confirming wind as a major National energy source. Wind turbine technology for use in deepwater offshore applications is proven economic and becomes a major new electricity source for states bordering coastal zones. | Wind turbines for
emerging applications
become available and
gain acceptance for
specialized uses such
as hydrogen production
and water supply. | Wind achieves high grid penetration level and is a nationally accepted part of our energy portfolio. National transmission infrastructure allows high levels of wind penetration. | Awareness and acceptance
levels are achieved nationally,
making further coordination
efforts unnecessary. | **Source: Wind Energy Multiyear Program Plan For 2007–2012**