

Project Overview

Social Landscape / Social Agenda

Japan's energy self-sufficiency rate is very low. The country needs to create and implement an energy infrastructure that uses hydrogen energy, cuts down on CO₂ emissions, and reduces dependence on imported fossil fuels.

Long-term Vision

(1)Establishing a CO₂-free hydrogen value chain (2)Improving energy security and contributing to the creation of a resilient. low-carbon society

During the Tokyo Games

Promoting Japan's potential to create a hydrogen-based, environmentally friendly societv

Three Priorities

Social Impact

Promoting the promise of a hydrogen-based society by proposing concrete measures for the production. transportation. storage. and utilization of hydrogen

Hospitality during the Games

Providing opportunities for both the Japanese people and foreign visitors to learn about the potential of hydrogenrelated technologies through events and demonstrations

Shared Value

Improving Japan's competitiveness in the global hydrogen industry

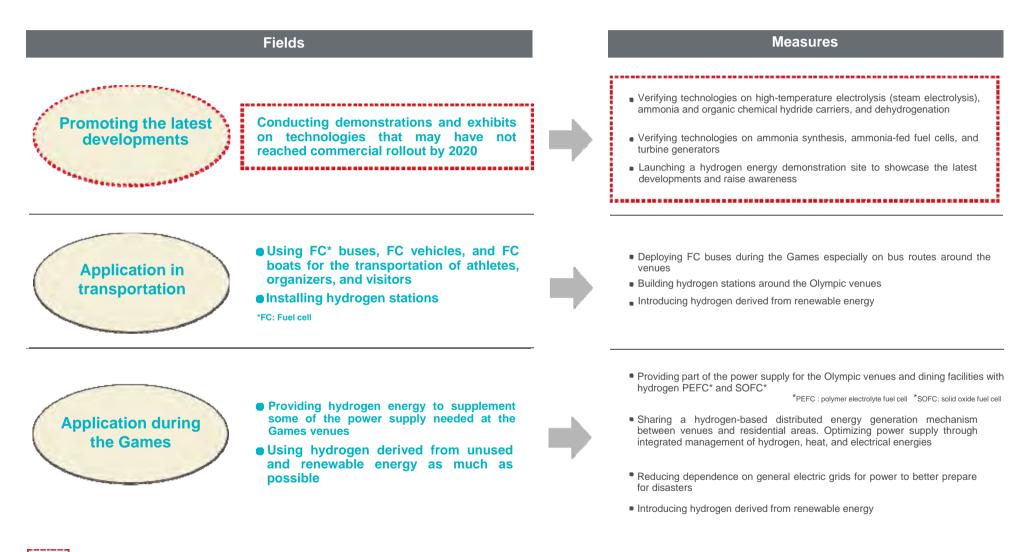
Concept for 2020

Energy Innovation 2020 Hydrogen Energy System

Moving toward the next stage of clean transportation and living with the latest low-carbon energy system

Lead by CAO*

* CAO : Cabinet Office * MIC : Ministry of Internal Affairs and Communications * MEXT : Ministry of Education, Culture, Sports, Science and Technology


METI : Ministry of Economy, Trade and Industry MLIT : Ministry of Land, Infrastructure, Transport and Tourism * MOE : Ministry of the Environment

MOE*

Observer Ministries

Verification tests in the following fields are being proposed around the Olympic and Paralympic venues to create a low-carbon, hydrogen-based society.

The diagram below is a conceptual drawing of a future hydrogen-based

society

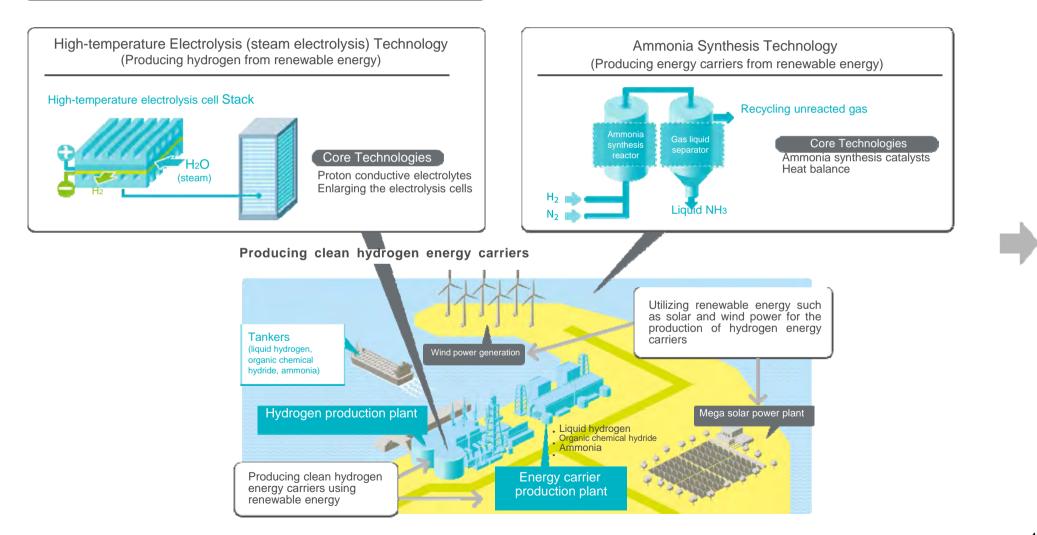
Conceptualization

Creating a low-carbon, clean-energy society by utilizing technologies in hydrogen production and hydrogen energy

Refinery hydrogen, By-product hydrogen, High-temperature Reformed gas electrolysis Hydrogen derived from (Steam electrolysis) unused energy, such as hydrogen digester gas and biogas Production Electrolytic hydrogenation NCH Renewable energy Ammonia Ammonia synthesis CH₃ Liquid (Renewable-energy derived) NH₃ Compressed hydrogen hydrogen Transport Energy carriers for transportation and storage Ammonia turbine Hydrogen PEFC* Hydrogen storage SOFC*-based tri-generation Dehydrogenation Emergency power supply *PEEC:polymer electrolyte fue Hydrogen purification Hydrogen turbine power *SOFC:solid oxide fuel ----generation ____ Ammonia-fed Application fuel cell Hydrogen stations FC buses Utilization of FC* waste FCV heat for thermal and hot-FC boats water systems *FC: fuel cell V2G Vehicle to Grid Integrated energy management Integrated FC buses operated by the ART (Advanced Rapid Transit) system Hydrogen-based advanced (hydrogen, heat, electricity) across buildings, smart community stadiums, and residential areas. Reducing carbon footprint and improving disaster preparedness

To be overseen by the Cabinet Office's SIP* Energy Carrier group

It is crucial to develop technologies to utilize energy carriers (liquid hydrogen, organic chemical hydride, ammonia) as well as establish ways to use hydrogen as an energy source to enable a hydrogen-based society in the future



Core Technologies To Be Overseen by The Cabinet Office's SIP* Energy Carrier Group

Technological development in the production of hydrogen energy carriers

*SIP : Strategic Innovation Promotion Program The diagram below is a conceptual drawing of a future hydrogen-based society. The Energy Carrier group of the Cabinet Office's SIP Program is involved in the technologies illustrated in the large boxes.

Part 1 Producing Hydrogen Energy Carriers

Core Technologies To Be Overseen by The Cabinet Office's SIP* Energy Carrier Group

Technological development on the utilization of hydrogen energy carriers

*SIP : Strategic Innovation Promotion Program The diagram below is a conceptual drawing of a future hydrogen-based society. The Energy Carrier group of the Cabinet Office's SIP Program is involved in the technologies illustrated in the large boxes.

Utilization of Hydrogen Energy Carriers Part 2 **Creating an Environmentally Friendly Hydrogen Society** Ammonia-fueled Combustion Turbine Power Generation Generator Using tankers for mass transportation Comp Core Technologies Tanker for liquid Storage hydrogen Combustion technology Gas turbine combusto Reducing nitrogen oxides Generating power using energy carriers Power plant Ammonia-fed Fuel Cells **Core Technologies** Tank truck (liquid hydrogen, Heat balance organic chemical Hydrogen-fueled and Using tank trucks to Enlarging fuel cells hvdride, ammonia) ammonia-fueled combustion transport energy carriers turbine power generation Hydrogen-fed and ammonia-fed fuel cells Energy Carriers (ammonia, organic chemical hydride) **Hydrogen Stations** Hydrogen station Core Technologies Supplying hydrogen to fuel cell vehicles Houses oluene Dehydrogenation catalysts Hydroger Membrane modules for hydrogen eactor purifier purification H₂ hydrogen Adsorption-separation NH3 NH₃ ammonia technology or MCH methylcyclohexane MCH N2 nitrogen

iatives	Cooperating Organizations	Details					
Research and Development							
High-temperature electrolysis (steam electrolysis) (Producing hydrogen from renewable energy)	SIP* Energy Carrier group (Cabinet Office and other relevant organizations)	Developing technology for hydrogen production by using heat and electricity from renewable energy to efficiently separate hydrogen from steam					
Energy carrier (ammonia) hydrogen stations	SIP Energy Carrier group (Cabinet Office and other relevant organizations) Industrial gas companies SIP	Developing dehydrogenation catalysts, reactors, and hydrogen purification systems to separate hydrogen fro ammonia and supply it to fuel cell vehicles at hydrogen stations. Ammonia is seen as a promising candidate an energy carrier.					
Energy carrier (organic chemical hydride) hydrogen stations	SIP Energy Carrier group (Cabinet Office and other relevant organizations) Oil companies	Developing dehydrogenation catalysts, reactors, and hydrogen purification systems to supply organic chemical hydride (methylcyclohexane) to fuel cell vehicles at hydrogen stations. Organic chemical hydride is seen as a promising candidate as an energy carrier.					
Ammonia-fed fuel cells	SIP Energy Carrier group (Cabinet Office and other relevant organizations)	Developing a power generating system using ammonia-fueled SOFC (solid oxide fuel cell)					
Ammonia-fueled combustion turbine power generation	SIP Energy Carrier group (Cabinet Office and other relevant organizations)	Researching power generation systems using ammonia-fueled combustion					
Ammonia synthesis	SIP Energy Carrier group (Cabinet Office and other relevant organizations)	Researching highly efficient ammonia production processes using hydrogen derived from renewable energy					

Course of Action for Smooth Rollout						
Inquiry into cost-cutting measures in the field of development	SIP Energy Carrier group	Launching initiatives for cost-cutting measures				
Research on risk assessment and safety evaluation ahead of social implementation	(Cabinet Office and other relevant organizations)	Launching initiatives on safety evaluation, risk mitigation, and public reception				

System Design						
Evaluating the practicability and economic efficiency of each technology Outlining the demonstrations and verification tests	Cabinet Office, relevant companies and organizations	Examining the details of demonstration methods, designing/constructing/testing prototypes, designing demonstration devices				

Agenda	2015 (FY)	2016	2017	2018	2019	2020	Legacy of Tokyo 2020
Research and Development	Timeline for SIP Developing eleme technology	ental	up (Cabinet Office and othe Prototyping	r relevant organizations) Testing under real-life conditions			
Course of Action for Smooth Rollout	Timeline for SIP Energy Carrier group (Cabinet Office and other relevant organizations) Safety evaluation		Tokyo 2020 Olympia And Paralympic Games				
	Cost-cutting	g measures and initiative	s to improve public recep	lition			
System Design	Reviewing each R&D initiative to assess the possibility of moving to the verification phase. Outlining verification and demonstration of applicable R&D initiatives	Examining the det demonstration me	Designing prototypes	Constructing and testing prototypes, designing demonstration devices			 Promoting commercialization of relevant technologies ahead of public implementation Promoting Japanese technology to the world

*SIP: Strategic Innovation Promotion Program