平成24年2月2日

聴取結果書

東京電力福島原子力発電所における事故調査・検証委員会事務局
局員 外掲

平成24年2月1日、東京電力福島原子力発電所における事故調査・検証のため、関係者から聴取した結果は、下記のとおりである。

記

第1 被聴取者、聴取日時、聴取場所、聴取者等
1 被聴取者
独立行政法人日本原子力研究開発機構安全研reauntセンター長 本間俊英
原子力安全委員会事務局管理環境課課長補佐 栗原潔
2 聴取日時
平成24年2月1日17時01分から同日19時18分まで
3 聴取場所
中央合同庁舎4号館643会議室
4 聴取者
久保善哉 外掲
5 ICレコーダーによる録音の有無
あり

第2 聴取内容
原子力防災指針において示されているEPZについて等
別紙のとおり

第3 特記事項
無し

以上
【取扱い厳重注意】

（別紙）

① なぜ日本は PAZ や UPZ という EPZ とは異なる概念を輸入することなく、EPZ を採用し続けたのかについて

○PAZ、UPZ や EPZ という概念は、多くの原子力防災に関する概念がそうであるように、米国が発祥である。米国が EPZ の概念をいつ決めたかは定かではないが、防災の分野で概念が拡充されていったのは 1979 年の TMI 事故以降であり、EPZ を明記しているニューレグレ 654 という文書は、1980 年に公表された。日本の EPZ もいつ採用されたかはわからないが、1980 年の「原子力施設等の防災対策について」（以下「防災指針」という。）ができたときだと思われる。

一方、PAZ や UPZ という IAEA の概念が正式な文書として出たのは、2002 年の GS-R-2 においてである。だから、この概念を導入する場合、検討できるのは 2002 年以降か、その後 GS-G-2.1 の出来た 2007 年辺りであり、ちょうど 2006 年、GS-G-2.1 のドラフトがまとまったところから原子力安全委員会原子力施設等防災専門部会防災指針検討ワーキンググループ（以下「WG」という。）の議論が始まった。

○PAZ は、モニタリングを待つことなく、原発施設が危険なことになりそうだという事象が起こったら、その事象ベースで避難の判断をして、PAZ の中にいる人を避難させようという概念である。IAEA の GS-R-2 の定義では、重篤な確定的影響を防止する範囲となっている。確定的影響とは頭蓋のある健康影響であり、その閾値を超えないければ確定的影響は起こらない。重篤な確定的影響とは、ますます確実性的死的な影響という意味であり、炉心損傷がまず起こり、次いで格納容器にも問題が生じて初めて重篤な確定的影響の起こり得るような事態になるので、急性の死に至るような高いレベルの放射線を受けることがないように、PAZ の領域内の人に対し、炉心損傷の事態・徹底を把握したうえで避難など予防的な措置を取るのがベストであるという趣旨である。

IAEA の表現の中に、放射性物質がリリースされる before or shortly after の時点で対処することという文言がある。水素爆発や水蒸気爆発など格納容器が損傷する物理的現象を原因とする、放射性物質が格納容器外に出る事象の発生は予測困難だが、それに比べて炉心が損傷したかどうか、そうかどうかは、オペレーターのレベルで様々なパラメータから徹底が比較的早い段階で分かるため、その時点で予防的措置を取るというものである。なお、避難などの措置を取る時点は before がベストだが、爆発のような形で事象が非常に早く進展する可能性もあるので、shortly after でもよいとしている。

○UPZ は、事象が発生したらまずモニタリングを行い、ブルームの濃度と拡散方向を把握してから、PAZ 内にいてすぐに避難した人以外で、やはり逃げないといけないという人がいればその人たちを逃がそうという概念で、PAZ よりももう少し時間的余裕がある。
IAEA の GS-R-2 での定義は、確率的な影響を低減するために、国際基準に沿って準備を整えていく範囲という定義である。もともと IAEA の放射線防護の考え方では、確定的影響を避けたものを最優先としているので、切尔ノブイリのときに、今で言う PAZ 外でも、雨により急性放射線で至るようなホットスポットが生じた場合があったことを踏まえ、それを避けるために、呪怨に依頼した従従によっても含めてそれを避けるという考えである。

また、放射線防護の確定的影響以外のもう一つの目的は、確率的影響を実行可能な限り低減するというものである。現在、ICRP 等でも、関値が存在しないと考える LNT（Linear Non-Threshold）仮説を防護のために使っているが、これは、どんなに小さくても線量の影響があるの、実行可能な限り、線量の影響を低減するための措置を取るという考え方であり、この場合指標となるのは、施設の従従ではなく、モニタリングポストで測られた線量 OIL (operational intervention level) である。ところが現在の防災指針により日本がとっている防護の指標は、回遊線量と呼ばれるトータルな線量で、曝露期間で累積・積分された量である。例えば回遊線量 50mSv が意味するのは、避難している間に避けられた線量が積算で 50mSv 以上であるならば避難すべきであるというクラティリアである。しかし避難する期間が明確ではないので、避難をするかどうかという判断をする緊急時に使うのは難しい。このような現実で使いづらい回遊線量の指標の欠陥について、IAEA は以前からずっと議論していて、線量率や濃度の通算のような適切に対応して直接的に評価可能な指標でなければならないと考えていた。OIL はそのような考えに基づいて（mSv/h といった単位で設定されて）いる。そもそも、防災において何か対策をとる場合には確実な情報に基づかないといけないが、原子力災害の場合は実測された量が最も明確な判断基準になりえる。そういう考えから、IAEA も、モニタリングをして OIL 基づいて対策を取っている。その対策を取るべき範囲が UPZ に相当する。

○平成 18 年の WG では、日本に実質的に PAZ という概念があるのかないのかという議論がされ、WG の資料では防災課題において実質的に PAZ が用いられているという書きぶりになっていて、私としては、日本は実質的に PAZ に該当する概念は無いのではないかという意見だった。WG では、安全委員会事務局と、PAZ の調査研究受託者である JABE の職員は、その PAZ の概念を日本に入れようという思想で議論していたが、保安院会の会合に参加したマイナスゾーンの（参考①）、今日において「また、放射性物質の放出前又は放出後直ちに、地域の実情や異常事態の影響及び今後の見通し等によっては、予防的に屋内避難あるいは避難等の対策を実施することも有効である。」という文書を書き入れにとどまった（参考②）。最終的にこのような書き方にするとここで議論がまとまったのは、避難訓練を行うとき、避難のタイミングが放射性物質の放出後では住民が納得しないの
で、放出前に避難するというシナリオにしていたことから、PAZ が実質的に導入されていなかったといえるためである。しかしながら、訓練においては、格納容器は損傷せず、放射性物質のリークが少し増えるだけの想定で、確定的影響を避けることを目的とするのではなく、少しの被曝も無いようにするのが目的であるという見解としていたのが実態である。

しかし、その後防災専門部会において、原子力発電関係団体協議会から、「各自治体は、防災訓練の中で、放射性物質の放出前または放出直後に住民の避難を行っているが、これは PAZ という意味で事前に範囲を設定し、それにに基づいて防護対策を講じているものではない。このため、仮想資料 13 について、誤解が生じないように表現を修正いただきたい。」と言われてしまった（2007年4月第15回原子力施設等防災専門部会防災 15-2-1）。

これは、日本の中核が想定していないような急性死亡が発生するような事故が起こるときに、どのように対処するかという観点で対策を考えているわけではないという主張である。保険会がなぜ抵抗したかというと、そんな決して事故は起きないと考えて地元を説得しているので、起こるかもしれないだろと言われないことだと思う。だが私は、起こるか起こらないかという可能性の話をしているのではない、一番重要な放射線防護の目的である確定的影響の防止を書かないでということはありえないといっ

た主張をしていた。

○IAEA の緊急事態区分のいずれかに該当するかを決めるためのプラントの事象を EAL（Emergency Action Level、緊急時活動レベル）と呼んでいる。元々は NRC が TMI 事故後に作った 1980年のニューリング 654で定義され、後に IAEA に取り入れられた概念で、ブランチの状態に関する緊急事態の区分の判断基準である。その緊急事態区分の判断基準を、米国では、規制要件の一つとしている。規制要件と言っても、設置段階というより運転許可段階である。我々も現在 WG で、日本でも緊急事態区分を定めること、そして EALに該当するものを事業者にきちんと作らせることをリコメンドしようとしている。原発法上の緊急事態は、第 10 条相当の事象に至る前、第 10 条相当の事象を超え
たが第 15 条相当の事象にまでは至っていないとき、第 15 条相当の事象発生以上の 3 つに分割できるが、IAEA の緊急事態の種類は General Emergency と、サイトまで影響が
及ぶとしてもサイトの中でもとどまる事象である Site Area Emergency と、安全機能が一部喪失して注意しなければいけない事象とある。それらの境界と、原発法第 10 条、第 15 条相当の事象は、そもそも定義、考え方方が違うので、それぞれ一対一対応するものでない。昨日、1月31日の WQ においてまさに EAL の議論が行われ、次の第 10 条、第 15 条との関連も議論になった（参考①）。この資料では、あえてグレードーションにし
て、Site Area Emergency、General Emergency は必ずしも原発法第 10 条、第 15 条に
相当するものではないということを書いているが、それぞれおおむね近い状態・事象で
あるとも言える。
○WGにおいては、1月31日の資料（参考⑥）のように、今後で原子力発電所からの通報周知の実効的なシステムの法的変更についての明確化が必要であると議論している。つまり、理想の状態は、事業者が周辺住民に直接知らせるようなシステムである。米国では直接事業者が住民に知らせる仕組みがあるが、日本では総理が緊急事態宣言をするので、米国のような明確な位置付けがしっかり必要である。

○今後EALを作ることが求められているが、その目的は、原子炉の状況を把握し、対応する緊急事態を区分することにある（参考⑨）。今WGでは、警戒（alert）のレベル1とサイトエリア（site area emergency）のレベル2と、重大な（general emergency）レベル3という3つの区分を提案しているが（参考⑩）、個別事象がこれらの区分のどこに入るかを決めるための技術的基準がEALに相当する。それを事前に決めておけば、事業者は数値的、あるいは定性的な基準を超えた場合、例えば今はレベル2だということに変わると、そして、それに応じた図、地方、事業者それぞれの動きを各区分ごとに自動的に実施すべき要件として決めておく。

その例も、防災指針の付属資料としてついている（防WG第12-2号「原子力発電所に係る緊急事態の区分と区分決定のための施設における判断基準に関する考え方（案）」別添3）今後定めていくEALと現行の原災法第10条・15条事象の要件の関係については、敷地境界における線量率に関しては、現在の防災指針に入っている表では原災法第10条、第15条の事象はSite area emergencyに列する前の事故段階に相当している（参考⑦）。一方、原子炉の中については、臨界や临界状況が発生できない事態はほぼSite area emergencyやGeneral emergencyに相当するので、炉内的要件については近く、一致しているところもある。ただし、炉内について異なっている要件として、新しいEAL例には自然現象やテロ行為が加わっている。General Emergencyを宣言するきっかけとしてのEALには、炉内圧力の上昇、敷地境界内の線量上昇、全交流電源喪失といったものに加え、様々な自然災害、津波、地震、テロリストの侵入等についても含まれている。

○PAZの概念と、確定的影響は必ずしも直結しているわけではない。定量的な数値を決めているEALの数字は、確定的影響が出るかどうかはなく、あくまでも炉心損傷が起こったかどうか、起こりそうかどうかを判断するものである。それは、炉心損傷が起こるかどうかが、まず原発における重大な、確定的影響に発展するきっかけとなり得る事故だからであり、炉心損傷に続いて確定的影響が起こりそうかどうかに関わらず、準備に着手するということがPAZの基本的な思想である。

○日本の防災指針の中で、かつてPAZ的な考え方が一切書かれていなかったにもかかわらず、原災法の総合防災訓練で、初回の平成12年からすでに鍵穴の形で避難していたのが
なぜかについては、最初に決めた人に聞いてみないとわからない。ただ、IAEA 基準の PAZ は領域の概念であり、避難のスキームに関してキーホールなどとは言っていない。米国が最初にニューレガ 654 の Supplement4（1997 年）でシピアアクシデントにおける防災のあり方を提示したが、その中で 2 マイル同心円、5 マイルは風下 3 方位となっており、それがキーホール型と言われているものである。経過防災訓練でキーホール型の避難が行われたのは、防災関係者でそれを知っていた人がいたのではないかと思う。その範囲で、まず PAZ に相当する最初のアクションをとるというスキームがある。かつて 10 マイルの EPZ を日本に持ち込むときに 10 キロにしたように、2 マイル、5 マイルを 2 キロ、5 キロとして、訓練の中で 10 キロの EPZ に対して、そういう狭い範囲でまずアクションをとるという訓練をやっていたということだろうと思う。ただし、各立地地域の担当者がそれぞれ米国の方法を勉強してキーホール型にしたというわけではなく、1 年に 1 回の総合防災訓練をやるときは、規制庁関連機関が集まってシナリオを検討しているが、JNES ができてからは、JNES に防災支援部ができているので、そこが米国の方法を学んで技術的なアドバイスをし、訓練シナリオのひな形を作っていったのではないかと思う。ただ、日本のこのような防災訓練が大々的に始まったのは、やはり JCO 事故後であり、2000 年に入ってから、米国の影響を受けてそういう訓練を始めたのではないかと思う。
② 安全委員会と原子力保安院の役割分担について

○（栗原）安全委員会の指針ではどこまで示すべきかについて。原子力安全委員会のさまざまな指針については、防災指針もあるし、その下にも、被曝医療、メンタルヘルス、モニタリング、ヨウ素剤服用の指針等色々あるが、安全委員会は、あまりにも詳細に示すべきか否か反省している。安全委員会が詳細に示せばよかったのではないかといわれれば、むしろ逆に、規制庁が自ら考えることを結果的に阻害してしまった嫌いがある。あまり詳細な技術的段取りまですべて原子力安全委員会が指針として出すことは適切ではない。それよりは大枠の書き方で十分である。

○保安院・JNESと安全委員会の役割分担の在り方について。各指針について、大枠の書き方で十分であるが、WGでPAZ、UPZを決めたときには、PAZという概念で、どういう判断が出されて、そして実際避難をするなら、現実的に避難ができるのか、避難の手段としては何をとるのかということまで見据えたフローレを考えうえで、技術的な範囲を示していかなければならないと言論した。米国でもNRCが調査しながら、自衛体によっ

tて屋内避難、脱出避難の重要性の認識がばらばらだったという現実があったため、自分のメッセージが十分でなかった、ということでSupplement4を改訂し、屋内避難や避難は、現実的にどうあるべきかを事前準備で検討している。現実のオペレーションは、もちろん地元の人々にしか分からないやり方、範囲があるわけだが、国としては、やはり距離だけではなく、やり方や含めて提示しなくてはいけないというふうに思っている。

つまり、あまり詳しく書きすぎると、保安院も地元も皆、自分で考えることをしなくなるという弊害がある一方で、議論の過程でいろいろなアイデアがあったわけで、それらを落として、圧搾して簡単な書き方をした指針だけ示すのでは、折角行った議論の中身が全然伝わりない。こうすべきであるということは簡単な言葉で書き、具体的にどうするかは自分で考えること、ただし具体的を考えるときの材料にしてもらうために、なぜこうすべきであると書いたのかという背景の議論は出したら方が良いということである。

これについては、1999年にJCO事態が起こる少し前に、安全委員会防災専門部会会実効的な向上のための文書を出している。その中に、いろんな地方の要求があって、その中に災害想定と具体的な防護措置のとり方を国がきちんと示すべきだという意見があっ

t（参考③）。そうだと思うし、国がそういうひな形を示していかないと、地方だけで任せていただけまるかわからない。今までは、比較的どうでもいいところまで細かく書いて

いる割には、本当に重要な思想にわたる部分が欠けていたと認識している。例えばモニタリング指針を見ると、透明な板を用意してそこに拡散の図形を重ね合わせるなど、非常に細かなオペレーションの具体的なところまで踏み込んで書いていた。

○詳細を書きすぎたことの弊害があったのではないかという点について、保安院と認識を
共有できていたか、各指針の改訂の作業ごとに、保安院には認識を共有するようにしている。ただ、今までは、耐震の審査の時にも、安全委員会の指針をそのまま流用するなど、誤解がお互いにあった面はあると思う。指針の改訂の作業中に、安全委員会の思想とむしろ逆、かなり手取り足取り書いてくれという趣旨のことを申し入れてきた。例えば UPZ の定義を昨年 11 月 1 日に出したが、UPZ の定義をするのであれば、その UPZ の中でどのようにモニタリングポストを配置し、避難をどのように行うのか、原発法第 15 条等との関連をどうするのかといった細かなことまで全部書いてほしいという要望をしてきた。安全委員会としては、ここは保安院と今後の規制において、自治体とともに、政治的状況、社会的状況、自然的条件を踏まえて考えてほしいと返した。例えば、モニタリングポストの予算の制約で、距離により固定型モニタリングポスト、モニタリングカー、航空機を用意したり、国民の世論が原子力発電所に対して厳しかれば、日本全国に固定型モニタリングポストを重点的に配置したりするなど、政治的状況、社会的状況とも左右される。あるいは、それぞれの自治体ごと、サイトごとに、冬は雪がいっぱい降ってとてもモニタリングカーが入れないようにする場所もあり、周りが全部山で、道路も一本も通ってなくて物理的に計測不可能な場所もあるので、そのような自然条件を大きく左右される。

〇（栗原）保安院が、安全委員会の指針をそのまま審査に流用するやり方は二次審査になっていないと言う安全委員会事務局の職員が多い。担当している防災指針以外のことはよくわからないが、それでも耐震指針とモニタリング指針、安定ヨウ素剤予防服用の考え方については、保安院は保安院で審査の基準をしっかり考えるべきであったにもかかわらず、そのようにしていなかった。安全委員会事務局としては、保安院は組織として自分たちでなんらかの規制の基準を新たに考えてつくって作業をするということによく慣れているわけであり、今まであまりそういった取り組みがなかったと認識している。例えば防災については、保安院の防災課の中には、防災指針やモニタリング指針を早く示してくれるという人はいても、ここをどう変えるべきだとか、我々として考えると、ということを表明する人はいなかった。

〇平成 18 年の時WGの資料の最後に、今後の検討課題の部分で、今後のIAEAとか諸外国での検討を待つに耐えたいという言葉があり、受け身的である。なぜ日本で独自に検討し、むしろ外国に発信していないのかというご質問だが、IAEAの検討を待つ対応したのは、IAEAにおいて当時正にこのOILとかEALのガイドラインの文章の議論が現在進行形であり、近々結果が出る見込みだったためである。

日本で独自に基準を作って、むしろ世界の標準にするべく発信していくというのは、無理な話である。防災をはじめ、基準の関係はほとんど米国のものを使っている。安全に関わる枠組み、安全委員会で作る指針はもともと米国が発祥であり、しかも諸外国の
指針も米国のものに似ている。それを全く違う、独自なものを作るというところにはい
かない。また、IAEA では Safety Requirement や Standard の策定に 90 年代後半から
力を入れはじめた。参加国、加盟国は、それを標準として使っていくというのが世界の
流れで、独自路線を行っていた米国も、今は IAEA の議論に積極的に参加している。そ
れに、10 年くらい前になるが、IAEA の加盟国が参加する原子力安全条約ができて、IAEA
が出している安全基準を尊重するという枠が入ったので、各国とも、IAEA 国際基準がひ
とつの標準であって、それを積極的に国内基準策定の際に参照するようにしている。よ
って IAEA の基準に合わせようという動きが、今は国際的に主流である。ただ、防災に
関してだけは、原発ができたころから、最も住民に近いものなので、非常に慎重な問題
があり、考え方が国ごとに全く異なっている。そのような中、IAEA は大変よく頑張った
と思うが、IAEA の考え方を積極的に取り入れようという国は、チェルノブイリ後の東ヨ
ーロッパぐらいで、例えばフランスとかイギリスとかドイツは、昔からのしがらみがあ
る。日本の場合も EPZ10km 以内だったら、お金が落ちるとか落ちないとかという話が
ある。今の IAEA 基準は、さっき言ったように、米国の考え方がかなり入ってきている
ので、フランスの基準とは違うし、イギリスとも違う。西ヨーロッパの先進国が、IAEA
の防災指針をそのまま取り入れようとするかというと、なかなか難しい。他の基準、例
えば設計指針とか運転とかよりもかい離が大きい。
③ EPZについて

○EPZの距離が8kmから10kmと決まった経緯は知らないが、8km～10kmという距離に定めた根拠については、明確に防災指針に書いている。設置許可の審査の際の環境被曝評価で使う手法を用いて事故発生時の放射性物質の放出距離を逆算すると、屋内施設を行うべき基準に該当するのが8km～10kmの範囲までであった。つまり、放出量でみて、設置許可の審査の際の立地評価事故、いわゆる重大事故仮想事故を相当上回るような量の放出があると初めて、8km～10kmの距離で希ガスで10mSv程度の被曝になる。つまり、設置許可で見ているような事故よりも大きなものを、防災では対象とするという論理で書かれている。初めに事故想定があって、そのときに危険の圏が8kmから10km、計算されるというアプローチで決めたものではないので、8km～10kmというのは先にあったのだろうと言われている。

○防災指針にある「炉内内蔵量に対して希ガス100%及びヨウ素50%が格納容器内に放出された際、格納容器からの環境中に放出される量」の「格納容器」は、損傷の程度を勘案したものではない。格納容器がどうなるかとかイベントが行われるかどうかことは一切言っておらず、あくまで「リーク」で格納容器外に漏れる希ガスとヨウ素の量を評価したものである。環境被曝評価で使う手法を用いた逆算によって算出される希ガス10mSv等に対応する放出量は、希ガス100%、ヨウ素50%が燃料から格納容器に放出される条件で評価される立地審査における仮想事故の放出量をはるかに上回り、大体10倍と言われている。なお、現在のPSAの知見から計算すると、格納容器が壊れる事故では、それもはるかに上回る量の放射性物質が放出される。イベントが行われた場合についても、10倍を越える量が放出されることを計算していたと思う。防災対策で勘案しているのは、格納容器が壊れない前提の計算でしかなく、まして今後の福島のような複数核島が一度に壊れるような事態は当然想定されていない。ヨウ素、希ガスしか見ていないのもそのため、フィルターを通して放出されるとしているから、センサー等の動的堆積粒子は出ない前提である。立地評価で希ガスとヨウ素しか勘案していないから、防災指針も希ガスとヨウ素しか検討していない。

○しかしながら、物理現象として起こり得る最悪・上限の事態を考え、それを元にEPZの距離を考えるべきとは思わない。私はもうとPSAが専門なので、典型的な事例を、これが防災用の想定事故だというふうに規定して範囲をとかを決めるとはナンセンスであるという意見である。代表的な事故を考えないというわけではないが、原発の事故は、PSA的な概念で言えば、ここまでの事故は防災対策を考え、それ以上の事故はどうしようもないから考えない、あるいは計算すれば発生確率がごく小さいから考えないとという線引きをするような議論はまだできていない。少なくとも典型的な事故を想定して
【取扱い厳重注意】

防災対策を行うということはありません。

○防災対策は残余のリスクへの備えであると言えると思うが、残余のリスクに対してどれだけ備えるかについては、まず設計段階でどこまでの事象を考えるかという問題と、それに設計段階での想定を超える事故への対処を事業者が自主でやるのか、規制側が要件を作るのかという議論が存在する。日本では、設計基準事象としては、单一故障を想定していた。それを超えるシビアアクシデント対策は、平成4年からずっと事業者の自主保安のアクシデントマネジメント策で対応して来たが、福島の事故の少し前から、国際基準がシビアアクシデント策を規制要件化する流れになってきたため、班田先生が着任されて以来、規制要件化を行うことになっていった。それをもっと上回る、確率のずっと低いものは安全目標になるが、それを満たしてもまだ残余のリスクがあると言われている。私はその残余のリスクを減らすことが、防災の一つだと思っている。住民を守るため、最後の皆として、設計やアクシデントマネジメントの先に先まで包含して守るべきだと思う。だから、相当程度大きな事故も考えなければならない。UPZを30kmにしているのは、かなり大きな事故を考えているということ。なお、避難範囲が3km、10km、20kmと拡大したことは、公衆が確定的影響を受けることはなかったが、確率的影響も、分かっている範囲ではないほど大きい被曝を受けなかったのは、比較的早い段階に、それまでは準備の無かった20kmより遠くの距離まで避難措置を取ったためであり、きちんととした防災対策の準備がなかったにもかかわらず、現場の努力により出来たことだと評価している。

○物理的に発生しうる事故の上限は、私の感覚ではチェルノブイリ原発事故相当の規模の事故である。なぜかというと、チェルノブイリでは炉内内蔵量に対して、希ガスはもちろん100％、ヨウ素は60％くらい出たと言われているが、これはPSAで計算したシビアアクシデントの結果に近い。そしてチェルノブイリは爆発事故なので、燃料の中に取り込まれているいわゆる難揮発性と言われるプルトニウムやストロンチウム、セリウムなど、沸点、融点が高いものも一緒に大気中に放出されている。一方、福島は普通の溶融事象なので全く違う。難揮発性は出ていない。

このように、チェルノブイリ事故は最悪の部類に相当すると考えが、EPZの距離を検討すると当たりどこまで考えればよいかというのは、なかなか難しいものである。

○IAEAの言うUPZと日本の今まで言ってきたEPZが等価な概念かについて。日本のEPZというのは、防災対策を重点的に考えておくべき範囲を言っているだけであるが、一方IAEAのUPZは、確率的影響をできるだけ低減することが目的であり、直接比較することはできない。しかし、IAEAにもEPZというもの概念が昔からあり、それをもう少し階層的に、数地から近距離の範囲であるPAZと、より広範囲の確率的影響を出来るだけ低減
【取扱い厳重注意】

する UPZ に分けた。だから UPZ は、日本の EPZ と等価のものだろうと議論した。それから距離的に見て、フランスが 10km、日本も 10km、ドイツは 25km、米国は 10 マイルなので 16km でみな同じような距離である。また、UPZ は、最初の技術文書段階での欧米の提案は 10km から 25km くらいだったが、各国とのネゴシエーションで、最終的に 5km から 30km と決められた。8km も入れることが出来るように、10km が下限にならないようにしようとする日本のコメントの影響が大きかった。このように、各国のものと見比べても、EPZ と UPZ はそんなに変わらない概念だった。平成 13 年頃の防災指針検討 WG では、PAZ の概念を入れることが主流であり、UPZ は最初からあまり議論の対象になっていた。UPZ＝EPZ の 10km は変えず、その中により重点的な対策をとる範囲を新たに設定しようと考えていた。

〇今回の事故で避難区域が 20km に拡大したことから、EPZ の 8km～10km という設定が甘かったのではないかと言われることについて、直接関わっていなかったので、物理的根拠は知らない。10km の避難区域を 20km にしたということは、それは一方では 10km の避難区域では対応していないかった、複数炉の事故の対策をとる必要があったため。

〇PPA はヨウ素対策を行う範囲である。今回の福島原発の事故の際、安全委員会で SPEEDI を使って放出量を逆算し、当時主に放出された 15 日後の気象条件を当てはめて分布範囲を算出した（文末③）。今回の福島の事故でも、安定ヨウ素棲付のクリテリアである 100mSv を越える海域が、根拠は SPEEDI の計算だけだが、60km のところで発生してしまったので、30km より遠くまでそういう範囲に入る可能性はある。それから、安定ヨウ素棲付の 100mSv という基準も、IAEA の基準を考慮に入れると、60mSv に下がる可能性もある。こうしたことから、ヨウ素を伴うようなブルームに対するヨウ素棲付と屋内避難といった措置をとるべき範囲が、UPZ の 30km を越える範囲にまで拡大する可能性があるという意見があり、私は個人的には反対したが、PPA の概念が出てきた（文末③）。

〇UPZ の 30km という距離を決めるにあたっては、様々な被曝パターンを考えている（文末③）。しかし、30km に決めた根拠はヨウ素だけでなく決めたわけではない。今回の事故の検証で（文末②）、小さい方が、7 月 8 月の計測値を 4 倍にした値で、大きいマルが 3 月の計測値であるが、100 μSv を越えるような線量が出た地域は 30km に及んでいること。また、IAEA の UPZ の考え方 5～30km であるから、これ最大値の 30km をとったことから、UPZ は概ね 30km を目安の値としている。一方で、30km だけで防護が十分とは言い切れないのではないかという考えをも示しているのが原子力安全委員会の資料（文末⑤）である。
【取扱い厳重注意】

○計画的避難区域は、緊急防護措置ではなく、もう少し後の一時的避難であった。UPZ とか PAZ の範囲はむしろ緊急防護措置としてすぐ避難するためのもので、ブームが飛んでいるときによりどうするかということである。飯館の計画的避難は、もう少しフェー ブが後の時に、最初に打った措置を変更したものである。だから UPZ や EPZ と飯館の計画的避難区域は別のものである。PPA はブーム通過時の直接の吸入対策をとるための範囲である。一方で、100 μSv を超えた地域があったが、さらに 1 年間発し続けると、20μSv/yearのような被曝が生じるような可能性のある地域を計画的避難区域にした。それがあらゆる関係にあるという趣旨である。

○平成 18 年の検討の時、UPZ について IAEA は 5km～30km という、上限をめぐるかなか り広い範囲を示していたが、それに対して、なぜ距離の見直しでしようという話にならなかったのかについては、各国の距離をみると、米国が 10 マイル＝16km、フランスが 10km と、諸外国と大差なかったためである。

○防災に関して、格納容器が健全であるという前提はありませんと思っていき、というの は、格納容器が健全だったら、敷地の外側で避難といった対応の必要性が生じる可能性 がほとんどないからである。この点、今までの EPZ の 8km～10km と、今回の UPZ の 30km の違いは、UPZ の 30km では、格納容器が健全でないことまで含め、シビアアクシデントを想定したということである。昨年 11 月 1 日の WG での資料の最後に、あえて現 行防災指針の抜粋（文末⑰）を示しているが、3 段階目を見ると、今までの 8km～10km という EPZ の上は、「十分に安全対策が講じられている原子力発電所施設を対象に、あえて技術的に起こりえないような事態までを仮定して、さらに十分な余裕をもって示 した距離であり、万一の緊急時の対応においても、その事態の影響の規模に応じ、8km ～10km の中の一部において、あらかじめ準備された対策を講じることになると考えられ る」としていた。この度、この考え方をまるで変える。今の UPZ の 30km という距 離は、起こりえない事故を想定しても、30km で十分な余裕があるとは言えない。30km の外にも影響が及ぶ可能性があるので、防護措置をどんな距離も、たとえ 100km でも とれるようにするとした。これからわかるように、UPZ の選択は、今までの EPZ のそ れとは全然違い、単に距離を増やしたものではない。
【取扱い厳重注意】

④ 海外関係について

〇私は外国にはECの研究所で2年ほど働いただけであり、海外関係のWG等への参加が多いのはそれが理由ではなくて、むしろ、原子力安全条約に日本が加盟した後の最初の国別報告書を作成した時に最初から検討委員会に入っていたとか、IAEAの安全基準を作るときに、我が国がコメントしたり、採り入れたりする作業を長くやっていた。GS-Rを作ることときは、IAEAの作業部門に日本の代表として出張を行ったりしたため、私はIAEAの人たちとも、つきあいがあった。

〇今回の事故における保安院の汚染水の通報等、外国への発信や、外国の情報の取得の能力については、外国の実態がどうかわからないので比較しては言えないが、原子力安全条約の国別報告書の第一回目に、日本は何もやってないという実態があったから、対応が不足している部分があったのではないかという印象がある。ただ、どれだけ現場と保安院の担当者とがスムーズに連携しているかという実態はわからない。

〇外国の規制当局間での人事交流はあまりやっていないと思う。私が知っている範囲では、保安院の人が外国の規制機関やIAEAに出向するというのは珍しい。日本は昔から語学的な問題があり、今でもこそIAEAの技術的な部分の会合に役所の職員が出席するが、私が昔はJAEAの会長が出席して議論したりしていた。保安院ができた以降はIAEAの安全基準文書作りに、ちゃんと保安院や安全委員会の必要な役職の方が参加している。

〇規制機関の人材をどうやって確保するかについて、米国の原子力規制機関であるNRCには、原子力潜水艦等で知見のある海軍から人が派遣されているのは有名である。しかし、同様の事情であるフランスやイギリスなどはわからない。原子力潜水艦等を保有していないドイツ等の国も現状もわからない。

【以上】
【取扱い厳重注意】

（付属資料１-３）
第２回防災相談対策ワークショップ
（平成18年5月3日）
防災WG第9回に委託

国際原子力機関（IAEA）文書において示された予防的措置範囲（PAZ）について

1. PAZ について

（1）定義
予防的措置範囲（PAZ：Precautionary Action Zone）については、IAEAの安全要件GS-R-2及び安全指針GS-G-2.1（DS105）において、確定的影響のリスクを低減するため、施設の状況に基づいて放出前又は放出後、予防的緊急防護措置を実施するための警戒がなされていなければならない区域として提案されているところ。

（2）対象施設
原子力発電所等

（3）範囲（半径）

放射性物質の放出に応じて、二段階に設定。
出力＞1000 MW(th) 3〜5 km
出力100〜1000 MW(th) 0.5〜3 km

なお、範囲の設定に関して、以下について留意するよう規定されている。

- 提案されている半径は、一般的な分析に基づいたものであり、各加盟国独自の視点で適切な範囲の大きさを決定するために個別の分析を行ってもよい。
- 施設を囲むほぼ円形のエリアに基づくが、対応時に簡単に特定できるようにする

（4）実施される防護措置内容

周辺住民への確定的影響の防止又は低減を目的として、放出前又は放出直後にPAZ内の住民の屋内避難、避難等を実施。
2. 我が国における現状

- P50に相当する範囲の設定については、現行の防災指針に規定はないものの、「防災対策を重点的に実施すべき地域の範囲」として、EFZの考え方が既に導入されている。
- 防災指針の5-8節(1)国内避難及び避難等に関する指標において、「上記指標に応じて異常事態の規模、気象条件を考慮した上、ある範囲を定め、段階的に実施されることが必要である」としていることから、現行の防災指針に基づき、IAEA文書において示された防護対策を柔軟に実施可能。
- 上記記述に基づき、既に現行の防災指針に基づくEFZ内における対応として、各地域公共団体の実情に応じて、施設の状態に基づいた放出源の実施間隔及び対策の実施が行われているところ。ただし、防護対策の実施範囲については、放出予測・拡散予測等に基づいた設定。実績は以下の通り

原子力災害対策特別措置法に基づく原子力総合防災訓練における実績

<table>
<thead>
<tr>
<th>年度</th>
<th>日時</th>
<th>対象施設</th>
<th>障害及び避難の実施</th>
<th>避難範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12</td>
<td>10月28日</td>
<td>島根</td>
<td>実施（放前） 1kmの円を中心とするキーホール型</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>10月27日</td>
<td>島根</td>
<td>実施（放前） 1kmの円を中心とするキーホール型</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td>11月7日</td>
<td>大阪</td>
<td>実施（放前） 2kmの円を中心にとするキーホール型</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>11月26日</td>
<td>鹿児島</td>
<td>実施（放前） 2kmの円を中心にとするキーホール型</td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>新潟県中越地震発生のため中止</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>11月9,10日</td>
<td>柏崎刈羽</td>
<td>実施（放前） 2kmの円を中心にとするキーホール型</td>
<td></td>
</tr>
<tr>
<td>H18</td>
<td>10月25,26日</td>
<td>伊方</td>
<td>実施（放前） 2kmの円</td>
<td></td>
</tr>
</tbody>
</table>

平成17年度の自治体主催の原子力防災訓練における実績

<table>
<thead>
<tr>
<th>対象施設</th>
<th>適用回数</th>
<th>障害及び避難の実施</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>原子力発電所</td>
<td>11回</td>
<td>実施（放前） 8回</td>
<td>避難範囲は1〜3kmの円を中心とするキーホール型</td>
</tr>
<tr>
<td></td>
<td>3回</td>
<td>実施せず</td>
<td>原発法10条要項まで</td>
</tr>
<tr>
<td>核燃料施設</td>
<td>2回</td>
<td>実施（放前）</td>
<td>青森県六ヶ所（日本原発再処理事業所）、茨城県（三菱原子燃料）を対象</td>
</tr>
</tbody>
</table>

参考①：防災指針（抜粋）
【取扱い厳重注意】

屋内避難及び避難場等に関する指標には、ある幅を持たせることとした。この理由は、線量によってのみ防護対策は決定されるべきではなく、その対策の実現の可能性、実行することによって生ずる影響、影響する人種及び地域されることとなる線量等を考慮して決定されるべきであり、そのためには防護対策の実施に柔軟性が必要とされるからである。また、災害対策本部が行う周辺住民等の行動についての勧告又は指示は、ある地域的範囲を単位として与えられることが予想され、この地域的範囲の中で予測線量が場所によって異なることも指標に幅を持たせた理由である。

なお、屋内避難者具体コンクリート屋内避難あるいは避難という防護対策を実際に適用する場合には、上記指針に応じて異常事態の規模、気象条件を考慮した上、ある範囲を定め、陰極的に実施されることが必要である。また、放射性物質の放射線又は放出後直ちに、地域の実情や異常事態の態様及び今後の見通し等によっては、予防的に屋内避難あるいは避難等の対策を実施することも有効である。

(2) 安定ヨウ素剤予防服用に係る防護対策の指標

安定ヨウ素剤予防服用に係る防護対策の指標として、性別・年齢に関係なく全ての対象者（原則40歳未満。細部については、仮想普及12参照。）に対しあよいに放射性ヨウ素による小児甲状腺腺被線量の平均線量100 mSvを提案する。この際、5-2(8)のとおり、本防護対策の効果が限定的であり、屋内避難、避難場等の他の防護対策を補完する対策であることを踏まえ、実施に当たりましては、技術的観点、実効性、地域の実情を考慮し、他の防護対策ともに判断することが必要である。

(3) 飲食物の摂取制限に関する指標

飲食物摂取制限に関する放射性元素として、放射性プルームに起因するヨウ素、ウラン及びブートニウムを選定するとともに、旧ソ連央 Cristianoの経験を踏まえてセシウムを選定した。そして、これらの核種による被ばくを低減するための対策として実効的な放射性物質の濃度として表3のとおり飲食物摂取制限に関する指针を提案する。

なお、この指針は災害対策本部等が飲食物の摂取制限詳細を講ずることが適切であるか否かの検討を開始するためを示すものである。

<table>
<thead>
<tr>
<th>対象</th>
<th>放射性ヨウ素（標準核種の代表核種：131I）</th>
</tr>
</thead>
<tbody>
<tr>
<td>飲料水</td>
<td>3×10⁴Bq/kg 以上</td>
</tr>
<tr>
<td>牛乳・乳製品</td>
<td></td>
</tr>
<tr>
<td>鶏肉類</td>
<td>2×10⁴Bq/kg 以上 (頸部、生産を除く。)</td>
</tr>
</tbody>
</table>

参考②：防災指針（抜粋）
【取扱い厳重注意】

2. 緊急事態区分の設定について

○緊急事態区分については、国において適切な区分を検討し、その区分の緊急事態に至った際に講ずべき防護措置と関連付けて設定する必要がある。

○緊急事態区分については、IAEAの安全要件GS-R-2（2002）「原子力は放射線緊急事態に対する準備と対応」、また国際等における緊急事態区分を踏まえ、以下の3つの緊急事態区分が必要であると考えられる。

【緊急事態区分レベル1：警戒事態（Alert）】

プラントの安全レベルが低下した場合、あるいは、その可能性があるような事象が発生した場合。

このレベルの緊急事態が宣告された場合、氏名の影響を緩和するための措置を講じ、施設内及、及び施設外及びにおける対応の措置を迅速に行わなければならない。

【緊急事態区分レベル2：施設内緊急事態（Site Area Emergency）】

公衆を保護するために必要とされるプラントの機能が実際的に喪失、あるいは、その可能性が高い事象が発生した場合。

このレベルの緊急事態が宣告された場合、氏名の影響を緩和するための措置を講じ、施設内及、及び施設外及びにおける防護措置の措置を迅速に行わなければならない。

【緊急事態区分レベル3：全面緊急事態（General Emergency）】

格納容器の健全性が喪失する可能性を伴うががん魔、もしくは燃料の溶融が実際に発生、あるいは、その可能性がひっ迫した事象が進行中、または発生した場合。

このレベルの緊急事態が宣告された場合、氏名の影響を緩和するための措置を講じ、施設内及、及び施設外及びにおける防護措置の措置を迅速に行わなければならない。

○施設の具体的な運用についての事業者の知見も踏まえ、今後、国において、緊急事態区分の数、内容等について必要に応じて見直しを行う。

参考②：防WG第12ー2号

「原子力発電所に係る緊急事態の区分と区分決定のための施設における判断基準に関する考え方（案）」（2枚目抜粋）
４．緊急事態区分と緊急対策レベル（EAL）に基づいた防護措置の実施について

○事業者が定めた「緊急対策レベル（EAL）」に基づき、国が定めた緊急事態区分を同定し、最も厳しい緊急事態（General Emergency）の場合には、放射性物質が環境へ放出される以前に、「予防的防護措置を準備する区域（PAM）」において遮断等の予防的防護措置を実施する必要がある。

○また、緊急事態の規模や時間的な進行を考慮に入れて、「緊急時防護措置を準備する区域（UZP）」および「プラント通過時の遮断を通過するための防護措置を実施する区域（PPA）」等における防護措置の実施について決定する仕組みを構築する必要がある。

○今後、国において、
①各原子力発電所における事業者からの通報・周知の実効的なシステムの構築について
②緊急事態区分に応じた、事業者、国、自治体、指定公団等の防災対応に関する機関の活動形態について

③複数基地サイドにおける多重事象の取り扱いについて

等に関する検討を行い、緊急事態区分と緊急対策レベル（EAL）に基づった防護措置の実施について、新たな枠組みの構築・法制化等の必要性が示される。緊急事態が発生した際に具体的な活動については、別添３,４を参考とすることが出来る。

／以上

参考⑤：防WG第12-2号
「原子力発電所に係る緊急事態の区分と区分決定のための施設における判断基準に関する考え方（案）」（5枚目抜粋）
参考①：原子力発電所に関する安全対策の区分

IAEAの緊急事態（EAL）の4分類

国際発表です。

- 事態
 生命体の温度が40°C以上であることは、原子力の安全を考慮していることを示している。水冷マージンは、冷却器の機能に影響を与える冷却温度から冷却機器を引くことにより示される。PWRでは、冷却マージンが低い場合、冷却器の水が腐食しており、冷却器の水が腐食している場合がある。燃料：NBCCS

- 4の通過条件
 燃料通過の結果を基に決定する。その結果を冷却温度を示すために下記のグラフを投与して、引き続き下記の図を示して

冷却マージン = Tref - Tref

ここで:
Tref = 冷却器基準温度
Tref = 下限の温度から冷却器基準温度
UNSAFE REGION = 危険の範囲
SAFE REGION = 安全の範囲

Water Separation Curve

![Water Separation Curve](image-url)
1. 鎮静室基準について

| 参考⑨：防犯放射能 （放射線） |

<table>
<thead>
<tr>
<th>鎮静室内の 基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td>異常事象の警告</td>
</tr>
<tr>
<td>Notification of Unusual Event</td>
</tr>
<tr>
<td>警告事象</td>
</tr>
<tr>
<td>Alert</td>
</tr>
<tr>
<td>禁止事象</td>
</tr>
<tr>
<td>General Emergency</td>
</tr>
<tr>
<td>Emergency</td>
</tr>
</tbody>
</table>

【異常事象の警告】
○今後の作業者は、設備の故障によってはもっと深刻な事故をとらえるか、あるいは現時点では明らかではないが、もっと深刻な事態と
なりうる状況を示すような事象（プラントの安全水準の低下の可能性が有する場合）
○事故者は、NRC、州等へ連絡

【アラート】
○今後の作業者が、設備の故障によってはもっと深刻な事故をとらえるか、あるいは現時点では明らかではないが、もっと深刻な事態と
なりうる状況を示すような事象（プラントの安全水準の大幅に低下）
○事故者は内体制を整え、所内モニタリング準備。NRC、州等は緊急時待機状態に入る。

【サイト緊急事態】
○存在放射性物質の放出が発生しつつあるか予測される
○緊急時活動が本格化し、所内モニタリングやNRC、州も加わった対応策の協議が開始。

【一般緊急事態】
○心の鎮静や容易が現実化しているかあるいは、混乱している場合
○施設等の活動停止

2. 鎮静室周辺の放射性物質の変動

（1）振込時：0.2 μGy/h
（2）普作：100 μGy/h 以上（閾値値）
（3）普作期事故時：20 μGy/h（装置変更）
（4）その他（R I放射能（レントゲン）の通過、施設内RT検査等）：100 μGy/h（閾値値）
防除第15-2-1号

「原子力施設等の防災対策について」（防災指針）
改訂案に対する意見について

平成19年4月24日

福井県

1 予防的防護措置の概念を指針に導入するに当たっては、現在、国際原子力機関（I.A.E.A）で検討が進められている「緊急時活動レベル」（E.A.L.）や「実用上の介入レベル」（O.I.L.）を合わせて踏襲すべきであり、今次改訂後には、それらの事項についても検討していただきたい。

2 今回の指針改訂の中で新たに追記された予防的防護措置の記述については、「有効な場合もある」といった表現ではなく、指針を基に防災活動を実施する自治体に混乱が生じないように、より明確にしていただきたい。

3 付属資料13の中で、「予防的措置範囲」（P.A.Z.）の説明とともに我が国における防護訓練の実施がとりまとめられている。各自治体は、防災訓練の中で、放射性物質の放出品または放出直後に住民の避難を行っているが、これはP.A.Z.のように事前に訓練を設定し、それに基づいて防護対策を講じているものではない。このため、付属資料13について、誤解が生じないように表現を修正いただきたい。

（注）本意見は、「原子力発電関係団体協議会」を構成している14道県で調整し、とりまとめたものである。

参考③：防除第15-2-1号
「原子力施設等の防災対策について」（防災指針）改訂案に対する意見について（福井県）
解説４ ブルーム被ばくに関する東京電力福島第一原子力発電所事故の例

環境中的放射性物質濃度の測定（ダストサンプリング）結果と発電所から測定点までのSPEEDIによる飛散シミュレーションを組み合わせることによって、放射線状態を連続的に、一定した放射線状態をSPEEDIの入力することによって、過去にきたにのって施設地での放射物質の
空気中濃度や地表面活性物質の分布を求め、事故発生時点からの内部被ばく及び外部被ばくの推算
値を計算した。

その結果、図10に示すように、ブームの放射性ヨウ素の吸入による甲状腺癌等発生率は、IABの
安全指針OSG-2の放射線被ばく防止条約の指針基準（50mSv）を用いても、その範囲に含まれる
可能性がある。
防災対策を重点的に充実すべき地域の考え方のイメージ

PAZ (Precautionary Action Zone)
予防的防護措置を準備する区域

UPZ (Urgent Protective action Planning Zone)
緊急時の防護措置を準備する区域

PPA (Plume Protection Planning Area)
プルーム通過時の被ばくを避けるための防護措置を実施する地域

図9 防災対策を重点的に充実すべき地域の考え方のイメージ

参考⑩：第81回 原子力安全委員会臨時会議 配付資料（1）
「原子力発電所に係る防災対策を重点的に充実すべき地域に関する考え方」(p21抜粋)
各防護措置の範囲(2)

<table>
<thead>
<tr>
<th>防護措置</th>
<th>設定基準値</th>
<th>空間集積基準</th>
<th>主要効果</th>
<th>指標</th>
</tr>
</thead>
<tbody>
<tr>
<td>非必要高層施設</td>
<td>内部照射 100μSv/ν</td>
<td>9</td>
<td>投影点100m、動遊離10min</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>投影点40m、動遊離20min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>投影点80m、動遊離30min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>投影点100m、動遊離50min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高層施設経過層ブロック</td>
<td>外照射2時間 2m/min</td>
<td>29</td>
<td>投影点100m、動遊離20min</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>投影点160m、動遊離20min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>投影点200m、動遊離30min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>投影点200m、動遊離30min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図7 IAEA基準を用いた気象指標に基づく被ばく線量評価の結果

(出典：防災指針検討ワークショップ (第6回会合) 配付資料 防WG第62号)

2）IAEAが定めるOILを用いた検討

環境モニタリングデータから、福島第一原発事故後の周辺の空間放射線量率を求め、IAEAが定めるOIL等を用いて検討した。
その結果、IAEAの放射線検査基準に基づく被ばく線量評価のOIL（1,000μSv/ν）を超える箇所は1F敷地内建物2箇所のみである。また、1F敷地内建物のOIL（100μSv/ν）を超える箇所は1F周辺の半径約6kmの範囲と東西南方向に延びる帯状の範囲（概ね30km）に限られている。 (図8)

参考1) 第81回 原子力安全委員会臨時会議 配付資料（1）
「原子力発電所に係る防災対策を重点的に充実すべき地域に関する考え方」(P19抜粋)
図6 避難区域、屋内避難区域と空気汚染最大値との比較

(出典：防災指針検討ワーキンググループ（第6回会合）配付資料 敷 WG 第5-1号)

参考③：第81回 原子力安全委員会臨時会議 配付資料（1）
「原子力発電所に係る防災対策を重点的に充実すべき地域に関する考え方」（p20抜粋）
第3章 防災対策を重点的に充実すべき地域の範囲

3-1 地域の範囲の考え方

原子力施設において、放射性物質又は放射線の異常な放出が発生した場合、緊急に講ずべき応急対策は、周辺住民等の被ばくを低減するための防護措置である。

原子力施設からの放射性物質又は放射線の異常な放出による周辺環境への影響の大きさ、影響を与えるまでの時間は、異常事態の発生規模、施設の特性、気象条件、周辺の地形、住民の居住状況等により異なり、発生した具体的事態に応じて適切適切に対応する必要がある。その際、被ばくの時間や機会を有効に活用し、周辺住民等の被ばくを低減するための防護措置を短期間に効率良く行うためには、あらかじめ異常事態の発生を仮定し、施設の特性等を踏まえて、その影響及び可能性のある範囲を仮想的観点から十分な余裕を持ってつつ「防災対策を重点的に充実すべき地域の範囲」（以下「E P Z」；Emergency Planning Zone）を定めておく、それに基づいて原子力施設に発生する対策を講じておくことが重要である。この範囲で実施しておくべき対策としては、例えば、周辺住民等への迅速な情報伝播手段の確保、緊急時モニタリング体制の整備、原子力施設に使用の燃料付等の整備、屋外避難、避難等の方法の周知、避難経路及び場所の明示等が挙げられる。

原子力施設からの放射性物質又は放射線の影響は、放出源からの距離が増大するにつれ著しく減少することから、E P Zをさらに拡大したとしても、それによって得られる効果は僅かなものとなる。E P Z内においても、施設からの距離に応じて、施設に近い地域に重点を置いて対策を講じておくことが重要である。

なお、放射性物質によって汚染された飲食物の摂取による内部被ばくの影響については、飲食物の流通状況によってはかなりの放射線に及ぶ可能性も考えられるが、飲食物の摂取制限等の措置は、原子力施設からの放射源又は放射性粒子による被ばくへの対抗措置とは異なるので、かなりの時間的余裕を持って講ずることができるものと考えられる。

3-2 地域の範囲の選定

E P Zのめやすは、原子力施設において十分な安全対策がなされているにもかかわらず、あえて技術的に国されていないような事態までを仮定し、十分な余裕を持って原子力施設からの距離を定めたものである。具体的には、施設の安全審査においては近い周辺とも、遙か遠い離れた場合を想定し、国際的に示す放射線の影響を相対的な関係に示す放射性物質の量が放出されても、この範囲の外側では屋内避難等の防護措置が必要なこと等を確認し、また過去の重大な事故、例えば戦後のCO事故又は米国のTMI1原子力発電所事故との関係も検討を行った。この結果、E P Zのめやすとして、表1に示す各原子力事業所の積算に応じた距離を用いることを提案する。E P Zのめやすについては技術的側面からの検討内容を、付属資料4に示す。

なお、このめやすは、原子力施設の特性を踏まえて範囲化し、余裕を持てて設定したものであるが、対象ある施設条件等を考慮するものについては、必要に応じて、当委員会において個別に評価し、提案することとする。

参考◎：防WG第7-3-2号
「原子力発電所に係る防災対策を重点的に充実すべき地域に関する考え方（案）」
（p22 参照）