聴取結果書

東京電力福島原子力発電所における事故調査・検証委員会事務局

局員 加藤 経将

平成24年2月15日、東京電力福島原子力発電所における事故調査・検証のため、関係者から聴取した結果は、下記のとおりである。

記

第1 被聴取者、聴取日時、聴取場所、聴取者等

1 被聴取者
東京電力株式会社

2 聴取日時
平成24年2月15日午後5時10分から同日午後6時45分まで（休憩なし）。

3 聴取場所
東京都千代田区大手町1丁目3番3号 大手町合同庁舎3号館9階
東京電力福島原子力発電所における事故調査・検証委員会事務局 919室

4 聴取者
参事官補佐 加藤 経将
主査 岡田 祐樹

5 ICレコーダーによる録音の有無等

■ あり
□ なし

第2 聴取内容
福島第一原子力発電所1号機、3号機及び4号機原子炉建屋における爆発について
別紙のとおり

第3 特記事項
なし

以上
【取扱い厳重注意】

別紙

【福島第一原子力発電所における爆発について】
○ 福島第一原子力発電所（以下「1F」）において、1号機の原子炉建屋（以下「R/B」）が平成23年3月12日15時36分頃に、3号機 R/B が同月14日11時1分頃に、4号機 R/B が同月15日6時12分頃に爆発している。

当社として、これらの爆発は、主として、燃料損傷に伴う水素イノミウム反応により水素が発生し、何らかの原因によりこの水素に引火して爆発に至ったものと考えている。

現時点の当社の調査においては、
・そもそも水素に起因した爆発なのか否か
・水素に起因した爆発であるとして、その水素がどこで発生したか
・各 R/B における爆発の発生がどこか
・水素がどの経路により R/B へ流入し、どこに蓄積していったか
・どの程度の水素濃度であったか
・発火源が何か

など、いまだ客観的に解明できていない事項はたくさんあるものの、現時点の当社の調査状況についてお話しする。
○ まず最初に、R/B の形状が残っている2号機について説明する。

当社としては、2号機においては爆発は発生していないものと考えている。

事故当時、3月15日6時頃、大きな爆発音がしたという情報と2号機圧力抑制室（以下「S/C」という。）の圧力が0 MPa abs に低下したという情報があった。当初は、4号機 R/B が損傷しているとの情報が入っていなかったこともあって、2号機の格納容器に重大な損傷が生じ、ほぼ同時に確認された爆発音についても2号機に由来するものと考えられていた。

しかしながら、1F 構内の 5か所に設置されている地震観測記録計に記録されている同時刻の爆発データが2号機又は4号機のそれらに由来するものかについて分析を行ったところ、4号機に由来すると考えられる方が整合的であった。結果として、この地震観測記録計による爆発データの分析により、
・3月15日6時頃に確認された爆発は4号機にて由来するものであること
・爆発が発生した時刻は、平成23年3月15日6時12分頃であること
が判明した。この分析結果については、平成23年12月2日に公表した「福島原発事故調査報告書（中間報告書）」（以下「中間報告書」という。）にも当社の見解として示している。

当時の状況を正直に言うと、2号機で爆発音がしたという情報に対し、事故対処に当たっていた我々もお歯がいと感じていた。なぜなら、2号機 S/C の圧力計が0 MPa abs を示したとされる一方で、D/W 压力は0.730 MPa abs を維持しており、D/W 压力がこれだけ維持されているにもかかわらず、格納容器が爆発したというのは極めて考えにくかったからである。しかしながら、この頃に福島第二原子力発電所へ必要人員以外は通行するという話があり、その混乱の中で、2号機が爆発したとい
情報が正しく修正されないままマスコミ等に報道されてしまったのである。
地震観測記録計による振動データの分析により、2号機は爆発していないことを示す比較的客観性のある証拠を得ることができたので、最近になってその旨を公表したという経緯である。
ただ、2号機S/Cの圧力計の表示が0MPa absとなったのは事実であり、圧力計が故障したものと考えられるが、どのような故障が生じて0MPa absの表示がなされたのかは、現時点では原因究明はできていない。
2号機R/Bが爆発していないのは、R/B東側壁面に設置されているプローアウトパネルが偶然にも開放していたからで、ここから換気がなされてR/B内に水素が蓄積しなかったためと考えられる。
○1号機及び3号機においては、原子炉圧力容器内の燃料損傷に伴い、ホーゼルコニウム反応が起き大量の水素ガスが発生したものと考えられる。原子炉内において水素を発生させる要因はホーゼルコニウム反応以外にもあるが、R/Bの爆発を引き起こすほどの大量の水素ガスを発生させるにはホーゼルコニウム反応以外には考えられないと考えられる。
ホーゼルコニウム反応によって水素ガスが発生するには、炉心損傷が開始していることを必ずしも必要とするわけではなく、温度が約900℃を超えてくると反応が活性化する。その反応は温度が高ければ高いほど進みやすくなり、水又は水蒸気さえあればどんな反応が続いていく。炉心損傷が開始する頃には一般的に約1200℃まで上昇しているため、炉心損傷が開始しているにもかかわらずホーゼルコニウム反応による水素ガス発生しないのはあり得ない。
今回の事故においては、1号機及び3号機共にR/Bが爆発する前に炉心損傷に至っていたと考えられ、R/Bが爆発する時点では既に大量の水素ガスが発生していたと考えられる。
○ホーゼルコニウム反応による水素の発生は、あくまでも原子炉圧力容器内における現象である。R/Bに水素ガスが流入するためには、まず最初に圧力容器から格納容器へ水素ガスが漏れ出し、さらに、格納容器のいずれかの場所からR/B内に漏えいしてこなければならない。この水素の漏えい箇所を厳密に特定するのは非常に難しい。
ホーゼルコニウム反応により発生する水素は非常に大量であるため、圧力容器の上側に滞留するにとどまらず、圧力容器のどこに損傷が生じても蒸気と共に水素は漏えいすると考えられる。仮に、圧力容器の底部に損傷が発生したとしても、発生する水素の圧力に押されて、底部から水素が漏えいすることも十分に考えられる。水素は非常に軽い気体であるため、蒸気の流れがあれば、それに随伴して水素も漏えいしていくはずです。
○格納容器からR/Bへ漏えいする可能性として考えられる場所はいくつかあるが、最も漏えいの可能性が高いのは格納容器フランジ部である。格納容器フランジ部とは、すなわち格納容器上蓋の結合部分である。
なぜ格納容器フランジ部が、漏えい箇所として最も可能性が高いと考えているかというと、事故後の調査において、2号機の開放しているプローアウトパネルからカメラを入れてR/B内の状況確認を行ったことがあり、その際に撮影した映像に、
【取扱い厳重注意】

格納容器フランジそのものは見えなかったものの、シールドプラグの隙間から湯気が立ち上っているのが確認できた。シールドプラグとは、運転中に中性子が外部に漏えいしないように格納容器を覆っているコンクリート製のカバーのことで、R/B 5 階に設置されている。

実際に、シールドプラグからの蒸気の漏えいを映像で確認できたのは 2 号機であるが、これと同様の現象は 1 号機及び 3 号機でも十分に起こり得る。

また、温度が上昇した場合、格納容器フランジ部が一番弱い箇所であるということはこれまでの研究成果によって知見として示されている。概して言えないが、格納容器温度が約 300℃を超えると漏えいが生じような隙間ができるとされている。

今回の事故においては、温度だけではなく圧力も併せて上昇していることから、こうした状況下では結合部分により大きな隙間ができることになる。

また、格納容器の温度上昇の順から考えても、格納容器フランジ部が最も漏れいの可能性が大きい。格納容器のうち、熱源となる圧力容器に最も近く、一番熟くなったりやすいのがフランジ部である。したがって、温度上昇は、格納容器全体で進んでいくものの、その中で最も早く温度が上昇し、劣化が進行するのが格納容器フランジ部であると考えられる。

他の可能性として考えられるのは、格納容器出入口ハッチの結合部分がある。ここは、定期検査の際等に格納容器に出入りするための貫通口であり、R/B 1 階にある。しかし、出入口ハッチは、密閉性という観点からすれば完璧ではないものの、二重層の構造となっていることから、漏えいの可能性は格納容器フランジ部の方が大きい。

また、格納容器には漏れ止めのためにシリコンゴム等を使用したシール部分があり、このような箇所から漏えいした可能性があり、例として電気ベネトレーションがある。電気ベネトレーションは、格納容器内に電源を送るためのケーブルが格納容器を貫通する穴のことをいい、ケーブルを貫通させた後にエポキシ樹脂等で穴を塞いでいる。格納容器温度が上昇してくると、この穴を塞いでいる樹脂が劣化し、隙間が生じて、その部分から漏えいする可能性がある。例えば、エポキシ樹脂を埋め戻しに使用した場合、約 300℃以上に温度が上昇してくると隙間が生じてしまう。電気ベネトレーションには、キャニスター型とモジュール型の 2 種類があり、キャニスター型の方が古いタイプなのでモジュール型に比べて漏えい可能性が大きい。

電気ベネトレーションのほかにも、圧力容器や格納容器を組み合わせた部分にはシリコンゴム等で密閉されている箇所がある。そうした箇所は、電気ベネトレーションと同様に漏えい可能性がある。

○ 格納容器から R/B へ水素が漏えいした経路として、格納容器ベントを実施した際に非常用ガス処理系（以下「SGTS」という。）の配管を通じて R/B 内に漏えいした可能性が考えられる。

この可能性について当社で検討したところ、4 号機については、3 号機で発生した水素が SGTS 配管を通じて 4 号機 R/B に流入した可能性が高いことが判明している。

- 3 -
中間報告書82頁にも記載しているとおり、4号機SGTSの弁は電源喪失下において全て開状態となっており、2系統ある放射物質除去フィルタの線量を測定したところ、
・フィルタ上流（4号機R/B側）が2系統共に約0.1mSv/h
・フィルタ中央部が2系統共に約0.5mSv/h
・フィルタ下流（排気筒側）が約5.5mSv/h及び約6.7mSv/h
であった。
SGTSは、そもそもR/B内の放射性物質を含んだガスを放射性物質除去フィルタによって浄化し、そのガスを排気筒を通じて大気へ放出する建屋換気設備である。したがって、放射性物質除去フィルタは、通常であれば設備建屋側がより汚染されているはずである。
しかしながら、先ほど述べたとおり、4号機SGTSの放射能除去フィルタの汚染状況は、設置建屋側のフィルタ上流の線量の方がフィルタ下流よりも明らかに低い結果となっている。この状況は、放射性物質を含んだガスの流れが通常逆の方向に污染されている。これより、SGTS配管を通じて3号機R/B側から4号機R/B内へ放射性物質を含んだガスが流入してきたことを示すものと考えられる。
そもそも、4号機は定期検査中であったことからR/B内に放射性物質を含むガスは存在せず、放射性物質除去フィルタの汚染が確認されていること自体が3号機からの流入を推定させるものである。
○3号機についても、SGTSの弁は電源喪失下において開状態となっており、SGTSの2系統ある放射線除去フィルタの線量測定をしたところ、
・フィルタ上流（3号機R/B側）が約2.0mSv/h及び約1.6mSv/h
・フィルタ中央部が約3.5mSv/h及び約3.2mSv/h
・フィルタ下流（排気筒側）が約1.3mSv/h及び約3.1mSv/h
であった。「福島第一原子力発電所3号機非常用ガス処理系線量測定および弁状態確認結果」（別添資料1）参照。この線量をみると、2系統共にフィルタの中央部の汚染が最も高くなっており、4号機における測定結果と状況が異なっている。
3号機において格納容器ベントを実施した際、放射性物質を含んだガスは、本来であれば、別添資料1の右方に記載されているペントラインから主排気筒に続く配管内を移動し、大気中に放出されることになる。しかしながら、別添資料1に記載のとおり、電源が喪失したことにによってSGTS配管上の主要な弁が開となっており、格納容器ベントによって放出された放射性物質を含んだガスの一部が主排気筒に抜けずにSGTS配管を逆流して3号機R/B内に逆流した可能性がある。
SGTSには、逆流を防止するための装置として、排気フランの出口側に格納ディダンバが設置されている。グラビティダンバは、重力を利用した逆止弁のことであり、垂直方向に設置された配管に音響開き弁が設置されており、下流からの圧力が一定以上になるとその弁が開放されるという仕組みになっている。SGTSが通常状態で作動している場合には、SGTS配管内を流れるガスは低圧であるが、ペントの際には格納容器内のガスが急激に移動することになり、格納容器ペント流の圧力は高いために、格納容器ペントの際に全て逆流を防げていたかは不明である。
３号機における SGTS の放射性物質除去フィルタの線量からすると、３号機 R/B 内から放射性物質を含んだガスが SGTS 配管を流れた兆候と格納容器ペントの際に３号機 R/B へ逆流した兆候の双方が認められる。

ただしだ、放射性物質除去フィルタで測定された放射線量は、３号機 R/B 内で計測される放射線量に比べて非常に低い値となっている。つまり、３号機 R/B から放射性物質を含んだガスが SGTS 配管内を流れてきた形跡も、格納容器ペントの際に放射性物質を含んだガスが３号機 R/B へ流入した形跡も双方が認められるものの、いずれもその量は限定的であったものと考えられる。少なくとも、格納容器ペントの際の逆流のみによって、R/B を爆発させるだけの水素が３号機 R/B 内に溜まったとは考えにくい。

また、３号機及び４号機それぞれの放射性物質除去フィルタの線量を比較してみると、３号機で測定された最高値は約 3.5mSv/h であり、４号機では約 6.7mSv/h であった。これらの値はそんなに違いはないとは受け止められるかもしれないが、実際にのは簡単には比べることはできないと考えている。なぜなら、４号機に流れていった放射性物質を含んだガスは蒸気を含んでいたことから、３号機から４号機へと数百メートルの距離を移動する間に蒸気が凝縮して水となるところ、それに伴って放射性物質も相当量が配管に付着することになる。つまり、３号機から流入していったガスは、４号機に到達する頃にはガス中に含まれる放射線量がかなり低下していることになる。したがって、３号機と４号機のガス中に含まれる放射線量の比値からすると、４号機の SGTS 配管に流入していったガス（非凝縮性の水素を含む）の方が圧倒的に大きかったことが分かる。

○ ３号機については、R/B のみならず、R/B に隣接している廃棄物処理建屋も損傷している。この廃棄物処理建屋が損傷した原因は明らかではないが、
 ・３号機 R/B が爆発したことに伴い、瓦礫等が衝突して損傷した
 ・廃棄物処理建屋そのものに水素が蓄積して爆発し、損傷した
という２つの可能性が考えられる。

仮に、廃棄物処理建屋そのものに滞留した水素が爆発したと考えると、水素がどのようにして流入してきたのかが問題となるが、廃棄物処理建屋内を通る配管で水素が流入するような配管は存在しない。そうであれば、水素が流入する可能性として残るのはダクトであるが、R/B と廃棄物処理建屋はそれぞれ独立した建屋となってしまうが、双方をつなぐダクトが存在するか否か現時点では分からない。ただ、水素は軽いために水平方向へはあまり流れていかないはずなので、R/B から廃棄物処理建屋へつながるダクトがあったとしても水素が流入する量は限定的だったと考えている。

なお、個人的な考えであるが、仮に廃棄物処理建屋そのものに滞留した水素が爆発したとすれば、廃棄物処理建屋の屋根が吹き飛ばれるはずであり、もしこれが爆発したとすれば、ある場所に水素ガスが大量に集まった状態と考える必要がある。
【取扱い厳重注意】

ながら R/B 5 階に流入した可能性が高い。ただ、R/B 内において、最初に R/B 5 階に流入したとしても、階段等でつながっている 4 階にも水素が流入し、蓄積していく可能性は十分にある。

1 号機 R/B については、5 階の天井及び側壁が全て吹き飛んでいる一方で、4 階以下は、その外観上、爆発による損傷はほとんど見られない。また、1 号機に関しては、非常用復水器タンクの水位を確認するために、昨年の 11 月頃に R/B 4 階まで入っている。その際に撮影した映像でも、5 階から 4 階に向けて物が崩れ落ちている様子が映されている。したがって、1 号機については、水素が 5 階に大量に蓄積し、そこで爆発が発生した可能性が高いと考えている。

そこで、5 階で爆発が発生したとすれば、5 階のいずれかの箇所に着火源となるようなものが存在したことになる。

まず着火源として考えられるのが、電気回路に損傷がでている箇所から生じる電気火花である。しかし、1 号機 R/B が爆発した 3 月 12 日 15 時 36 分頃の時点で、全電源喪失状態であったことから、R/B 内では電気火花は飛ばないと考えられる。

次に、別の可能性として静電気が考えられる。しかし、静電気は乾燥している空間では発生しやすいものの、格納容器から水素が漏れいしている当時の状況であれば、水蒸気もかなりの量が漏れいしていると考えられ、R/B 内は非常に多湿な状況であったはずである。そうであれば、爆発当時の R/B 内においては静電気は発生しにくい状況にあったと考えられるが、現時点では静電気が着火源であったか否かは不明である。

また、1 号機 R/B が爆発した 3 月 12 日 15 時 36 分頃、1 号機では電源復旧作業が行われていた。この頃には、高圧電源車から 2 号機のパワーセンター（2 C）へのケーブルをつなぎ込む作業は完了しており、1 号機及び 2 号機に仮設の電源を供給するための最終的なメガーチェック等を行っていたはずである。この作業が、1 号機 R/B の 5 階に電気が流れるような状況にあったか否かは分からない。しかし、当時、1 号機 R/B の 5 階に設置している設備は復旧対象とはなっていなかった。また、4 階には非常用復水器が設置してあるが、当時は復旧させる対象とはなっていなかった。これ電源復旧作業が R/B の爆発にいかなる影響を与えたかは、現時点不明である。

〇 3 号機 R/B における爆発の威力は、1 号機 R/B のそれと比べると圧倒的に大きい。そもそも、1 号機と 3 号機では R/B の構造が異なっている。1 号機は、鉄筋の骨組みに鉄板を張り付けただけの構造（サイリング工法）であるのに対し、3 号機は鉄筋コンクリート造となっている。したがって、R/B そのものの強度は 3 号機の方が大きい。

R/B の構造から考えれば、1 号機は鉄板を張り付けただけの構造であるので、多少の圧力であっても鉄板が吹き飛ぶことなく、一方で、3 号機は鉄筋コンクリート造となっているので、R/B は簡単に吹き飛ぶことはない。また、3 号機 R/B が爆発しているということは、R/B 内にかなりの圧力が溜まっていったと考えられ、その圧力が急激に開放されたことによってその破壊が起きたのである。

我々としては、R/B における爆発の原因は水素であると考えており、実際の損傷
【取扱い厳重注意】

状況と矛盾しないかどうかを社内で検討している。1号機の場合、R/B 5階部分の
壁がそのまま吹き飛んでおり、水素発生が原因と考えても矛盾はない。1号機の爆
発の特徴として、R/B 5階天井部分の損傷は少なく、比較的そのままの形状で R/B
5階床面に落ちている。爆発により生じた圧力は水平方向に進んでおり、その結果
として R/B 5階の壁面が減少している。また、1号機の爆発の際には白い煙が発
生しているが、水素燃焼によるものとして説明が可能である。

3号機の場合、1号機の場合と異なって、垂直方向にすごい勢いで瓦礫や煙が吹
き上がるとともに、水平方向にも爆発は広がっていた。爆発の規模という観点から
すれば、水素濃度が高くなっていた場合、この爆発規模にまで達することは十分に
あり得るので、爆発の原因が水素だとしても矛盾はない。3号機 R/B の爆発が、
音速を超える圧力波を生じさせる爆弾に達していたか否かは不明であるが、少なく
とも爆発に近い状態になっていた可能性があると考えている。また、3号機 R/B
の爆発の際には、建屋から黒い煙が大量に出ていた。これは、3号機 R/B が鉄筋
コンクリート造であることから、爆発に伴ってコンクリートを巻き上げた結果とし
て黒く見えた可能性がある。

1号機についても3号機についても、格納容器フランジ部から漏えいした可能性
を考えれば、爆心が5階であった可能性は高い。

〇 4号機 R/B における爆発の原因となった水素は、3号機 R/B から配管を通じて
4号機 R/B へ流入したと考えている。そして、水素は、ダクトを通じて R/B 全体
に広がっていたと考えられる。当然のことながら、ダクト内の水素濃度は非常に
高かったと考えている。

後日、4号機 R/B 内に調査に入ったところ、5階床面が上方に歪曲している状
況等が確認されたことから、4号機 R/B における爆発の機心は4階だったと考え
ている。また、R/B 3階及び4階で粉々になったダクトの残骸を発見しており、ダ
クト内でも爆発が生じたことを示している。ダクト内の水素濃度にもなるが、仮に
爆発が起きるように高い水素濃度となっているとすれば、その衝撃波によって R/B
にかなりの損傷が生じたとしても矛盾はない。別の可能性として、R/B 4階に充満
した水素が何らかの原因によって爆発し、そのまま連鎖的にダクト内の水素も爆発
した可能性も考えられる。

いずれにしても、ダクト内の水素が爆発した形跡は認められるものの、着火源と
なるようなものが見当たらず、何が契機となって爆発を引き起こしたのかは不明で
ある。

以上
福島第一原子力発電所3号機
非常用ガス処理系線量測定および弁状態確認結果

弁状態の例

通常待機時/電源喪失時
※記載の弁は全て空気作動弁
※丸巻きの弁は12月22日の現場調査で
電源喪失時の状態[開]であることを確認