再処理施設及びMOX燃料加工施設について

令和7年9月24日原子力規制庁放射線防護企画課

1. 発電用原子炉施設と比較した場合の原子力災害対策重点区域の違い

発電用原子炉施設以外の原子力施設(加工施設、再処理施設等)では、その熱出力や炉内に蓄積される 放射性物質の量、形態、種類が発電用原子炉施設とは異なり、その結果、想定される緊急事態の規模が小 さくなる。そのため、原子力災害対策指針では、発電用原子炉施設以外の原子力施設については、予防的 防護措置を準備する区域(PAZ)は設定されておらず、また、緊急防護措置を準備する区域(UPZ) については、発電用原子炉施設よりも狭い範囲で設定されている。

[原子力災害対策重点区域]

	予防的防護措置を準備する区域	緊急防護措置を準備する区域	
	(PAZ)	(UPZ)	
発電用原子炉施設	施設からおおむね半径 5km 以内	施設からおおむね半径 30km 以内	
MOX燃料加工施設	設定なし	施設からおおむね半径 1km 以内	
(六ヶ所村)			
再処理施設	設定なし	施設からおおむね半径 5km 以内	
(六ヶ所村)			

なお、同指針で定めるUPZ内における屋内退避や運用上の介入レベル(OIL)に基づく一時移転等の防護措置の内容については、臨界事故においては発電用原子炉施設と同等の防護措置を行うことになるが、蒸発乾固等の臨界以外の事故が発生した場合には、放出される核種の違いから、発電用原子炉施設と同等の防護措置を基本としつつ、アルファ核種の経口摂取等を防止するために屋内退避及び摂取制限を行う必要がある。

原子力災害対策指針 (抜粋)

(3)原子力災害対策重点区域

(略)

② 原子力災害対策重点区域の範囲

原子力災害対策重点区域は、各原子力施設に内在する危険性及び事故発生時の潜在的な影響の度合いを考慮しつつ原子力施設ごとに設定することを基本とする。原子力施設の種類に応じて原子力災害対策重点区域の範囲の目安を次のとおり定める。

なお、同一の原子力事業所内に設置される全ての原子力施設の原子力災害対策重点区域の範囲の目 安が同一である場合には、当該原子力事業所ごとに原子力災害対策重点区域を定めることができる。

(i) 発電用原子炉施設

発電用原子炉施設の原子力災害対策重点区域は、国際基準や東京電力株式会社福島第一原子力発電 所事故の教訓等を踏まえて、次のとおり定める。

(イ) 予防的防護措置を準備する区域(PAZ:Precautionary Action Zone)

PAZとは、急速に進展する事故においても放射線被ばくによる重篤な確定的影響を回避し又は最小化するため、EALに応じて、即時避難を実施する等、通常の運転及び停止中の放射性物質の放出量とは異なる水準で放射性物質が放出される前の段階から予防的に防護措置を準備する区域である。発電用原子炉施設に係るPAZの具体的な範囲については、IAEAの国際基準において、PAZの最大半径を原子力施設から3~5 kmの間で設定すること(5 kmを推奨)とされていること等を踏まえ、「原子力施設からおおむね半径 5 km」を目安とする。

なお、この目安については、主として参照する事故の規模等を踏まえ、迅速で実効的な防護措置を講ずることができるよう検討した上で、継続的に改善していく必要がある。

(ロ) 緊急防護措置を準備する区域(UPZ: Urgent Protective Action Planning Zone)

UPZとは、確率的影響のリスクを低減するため、EAL、OILに基づき、緊急防護措置を準備する区域である。発電用原子炉施設に係るUPZの具体的な範囲については、IAEAの国際基準において、UPZの最大半径は原子力施設から5~30kmの間で設定されていること等を踏まえ、「原子力施設からおおむね半径30km」を目安とする。

なお、この目安については、主として参照する事故の規模等を踏まえ、迅速で実効的な防護措置を講ずることができるよう検討した上で、継続的に改善していく必要がある。 (略)

(ii) 試験研究用等原子炉施設

(略)

(iii) 加工施設

(略)

(ロ) プルトニウムを取り扱う加工施設

日本原燃株式会社再処理事業所に設置されるMOX燃料加工施設に係る原子力災害対策重点区域の範囲は当該加工施設からおおむね半径 1 kmを目安とし、当該原子力災害対策重点区域の全てをUPZとする。

(iv) 再処理施設

国立研究開発法人日本原子力研究開発機構核燃料サイクル工学研究所及び日本原燃株式会社再処理事業所に設置されている再処理施設に係る原子力災害対策重点区域の範囲は当該再処理施設からおおむ料径 5 kmを目安とし、当該原子力災害対策重点区域の全てをUPZとする。

(v) その他の原子力施設

(略)

2. 原子力災害対策重点区域の妥当性の評価

六ヶ所村のMOX燃料加工施設及び再処理施設の原子力災害対策重点区域を原子力災害対策指針で定めるに当たっては、日本原燃株式会社が行った災害対策上のハザード評価の内容を原子力規制委員会が確認し、同重点区域が妥当であることを事前に確認している。

ハザード評価の確認のポイントは以下のとおり。

- ・施設の構造を考慮した事故の想定及び放出量等の評価
- ・事故の評価に基づいた確定的影響評価による IAEA 基準との比較による分類の確認
- ・事故の評価に基づいた確率的影響評価による原子力災害対策重点区域の設定の妥当性の確認

また、当時の評価に関する資料から一部を抜粋し、次ページ以降に整理した。

(参考1) 再処理施設の災害対策上のハザード評価

(参考2) MOX燃料加工施設の災害対策上のハザード評価

注:参考1及び参考2の情報は、「第15回原子力災害事前対策等に関する検討チーム会合」(平成 28年11月25日)の資料2-1及び資料2-2の内容を抜粋したものであり、実際に原子力規制 委員会が日本原燃株式会社に対して許可処分を行った事業許可申請書で説明されている評価 値等と異なる場合がある。

再処理施設の災害対策上のハザード評価


(1) 臨界事故に係るハザード評価

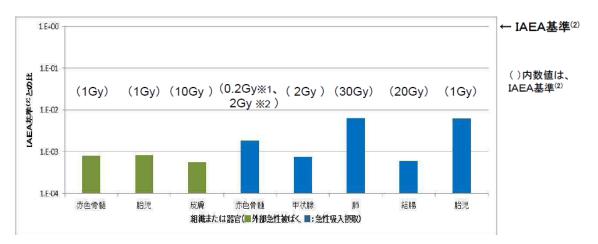
▶ 事故の想定

評価事象	インベントリ	気相への	放出経路での	放出量(Bq)	放出経路
		移行割合	低減割合		
臨界事故	総核分裂数:	希ガス:1	希ガス:1	希ガス:5×10 ¹⁶	主排気筒放
	1×10^{20}	ヨウ素:0.25	ヨウ素:1	ヨウ素:6×10 ¹⁴	出
		その他*:5×10 ⁻⁴	その他*:1×10 ⁻³	$Pu^* : 3 \times 10^{11}$	

*:溶液の蒸発に同伴する放射性物質

▶ 重篤な確定的影響に係る評価結果

※1:原子番号≥90の放射性核種 ※2:原子番号≤89の放射性核種


(2) 外的事象を要因として発生が想定される事故に係るハザード評価

▶ 事故の想定

評価事象	インベントリ	気相への 移行割合	放出経路での 低減割合	放出量(Bq)	放出経路
外的事象を要 因として発生 が想定される 事故	蒸発乾固: 安全冷却水系の 冷却対象につい ての7日間の蒸 発量及びRu揮発	エアロゾル: 5×10 ⁻⁵ Ru: 0.12	エアロゾル:1× 10 ⁻² Ru:1	Ru: 2.1×10^{13} Pu: 5.1×10^{12} Am/Cm: 9.0×10^{11}	建屋からの 地上放出
	量 水素爆発: 7日間で爆発濃度に到達する機器等で再爆発を 考慮	1 × 10 ⁻⁴	1 × 10 ⁻²		
	高レベル廃液ガラス固化廃ガス 処理設備排気停止による閉じ込め機能の喪失	-*	エアロゾル:1× 10 ⁻² Ru:1		

* 浄化機能の喪失に係る事故であるため、新たな放射性物質の気相への移行がない。

▶ 重篤な確定的影響に係る評価結果

・評価期間は7日間としたが、7日目以降に放出される揮発性Ruの影響等を考慮しても、IAEA基準に対して裕度がある。

※1:原子番号≥90の放射性核種 ※2:原子番号≤89の放射性核種

(3) ハザード分類

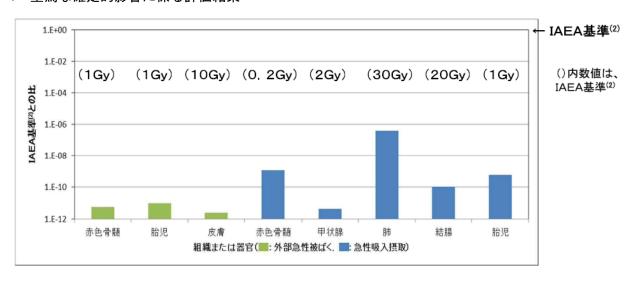
ハザード評価の結果から、IAEA基準による分類 I (敷地外で重篤な確定的影響を生じさせるおそれのある施設)ではないと考えられる。

したがって、以上のハザード評価の結果から、IAEA基準の考え方に基づくと、分類 II とすることが適切であり、最も保守的に原子力災害対策重点区域を設定すると、PAZ:なし、UPZ:5km となる。この 5km のUPZ設定が適切であるか否かを確認するために、評価点を放射性物質が放出される建屋から 5km の地点とし、以下①~③を対象として確率的影響の評価を行った。

- ① 臨界事故
- ② 外的事象を要因として発生が想定される事故
- ③ ②の事故とMOX燃料加工施設における閉じ込め機能の喪失とが重畳する場合(以下、「再処理施設と MOX 燃料加工施設との事故の重畳」という。)
- IAEA基準である「実効線量で100mSv/7日間」に対して、確率的影響の評価結果は、以下のとおり
- ① 臨界事故:約3mSv
- ② 外的事象を要因として発生が想定される事故又は③再処理施設と MOX 燃料加工施設との事故の重 畳:いずれも、約21mSv

なお、敷地境界において、蒸発乾固や水素爆発等が単独で発生する事象では、7日間で 100mSv を超えるおそれはない。

出典:第15回原子力災害事前対策等に関する検討チーム会合(平成28年11月25日)資料2-1抜粋 (https://www.da.nsr.go.jp/view/NRA057000004?contents=NRA057000004-002-003#pdf=NRA057000004-002-003)


MOX燃料加工施設の災害対策上のハザード評価

(1) ハザード評価

▶ 事故の想定

評価事象	インベントリ	気相への	放出経路での	放出量(Bq)	放出経路
		移行割合	低減割合		
大規模火災	143.5 kg Pu (潤滑油保有量の多い機器が設	1 × 10 ⁻²	1 × 10 ⁻⁶	$Pu^{*}: 8 \times 10^{8}$ (1. 4 × 10 ⁻³ gPu)	
	置されている部屋及びその隣室 の Pu インベントリ)			(I. TATO gru)	
爆発	103. 15 kg Pu	1 × 10 ⁻²	経路①:1×10 ⁻¹⁰	Pu*:5×10 ⁷	
	(水素・アルゴン混合ガスを		経路②:1×10 ⁻⁸	$(1.5 \times 10^{-3} \text{gPu})$	
	取り扱う機器内の Pu インベ				
	ントリ)				地上放出
粉末容器落下	428. 0 kg Pu	7 × 10 ⁻⁴	1 × 10 ⁻⁶	Pu*:2×10 ⁶	地工双山
	(各設備が保有する粉末容			$(3.0 \times 10^{-3} \text{gPu})$	
	器内の Pu インベントリ)				
上記同時発生		_	_	Pu*:8×10 ⁸	
				$(1.5 \times 10^{-3} \text{gPu})$	
閉じ込め機能の				Pu*:8×10*	
喪失(大規模火		同上			
災、爆発等の同時					
発生)【再掲】					

▶ 重篤な確定的影響に係る評価結果

(2) ハザード分類

重篤な確定的影響に係る評価結果より、MOX燃料加工施設はIAEA基準による分類I(敷地外で重 篤な確定的影響を生じさせるおそれのある施設)ではないと考えられる。

・IAEA基準では、加工施設の具体的なハザード分類及びその原子力災害対策重点区域の範囲の目安 (半径)については、MOX燃料加工施設は敷地境界から500m以内で核分裂性物質を取り扱う施設であ り、原子力災害対策重点区域の範囲の目安はPAZ:なし、UPZ:0.5-1kmとなる。 確率的な影響評価について、重篤な確定的影響に係る評価と同じ条件、被ばく経路等で放出された放射性物質による放射性雲及び地表に沈着した放射性物質からの外部被ばく、並びに放出された放射性物質の吸入摂取による実効線量を算出し、IAEA基準に示される原子力災害対策重点区域の範囲の目安を変更する必要があるか否かを評価する。

- 確率的影響に係る I A E A 基準は 100 m Sv / 7 日間である。
- ・ 評価結果は、放出点から 1 k mの位置において、0.03 mSv であり、上記 I A E A 基準を十分下回るものであった。

ハザード評価の結果から、IAEA基準の考え方に基づくと、MOX燃料加工施設は分類ⅡCとすることが適切であり、原子力災害対策重点区域の範囲の目安はPAZ:なし、UPZ:1kmとなる。

出典:第15回原子力災害事前対策等に関する検討チーム会合(平成28年11月25日)資料2-2抜粋 (https://www.da.nsr.go.jp/view/NRA057000004?contents=NRA057000004-002-003#pdf=NRA057000004-002-004)