第2部 海上交通の安全

1. 海難のない社会を目指して

- 海難の発生を未然に防止するとともに、海上における人命の喪失を防ぐ。
- 経済や自然環境への甚大な悪影響を防ぐため、海上交通の安全を確保する。

2. 海上交通の安全についての目標

- ① 我が国周辺で発生する船舶事故隻数(本邦に寄港しない外国船舶によるものを除く。)を令和7年と比較し約1割削減を目指す。
- ② ふくそう海域**における航路を閉塞するような社会的影響が著しい大規模な船舶事故の発生数をゼロとする。
- ③ 海難における死者・行方不明者を減少させるためには、高い救助率を維持確保することが重要であることから、救助率95%以上とする。
- ※ 東京湾、伊勢湾、瀬戸内海及び関門港における船舶が多数通航する海域

3. 海上交通の安全についての対策

〈4つの視点〉

- ① ヒューマンエラーによる事故の防止
- ② ふくそう海域における大規模な船舶事故の防止
- ③ 旅客船の事故の防止
- ④ 人命救助体制及び自己救命対策の強化

〈10 の柱〉

- ① 海上交通環境の整備
- ② 海上交通の安全に関する知識の普及
- ③ 船舶の安全な運航の確保
- ④ 船舶の安全性の確保
- ⑤ 小型船舶等の安全対策の充実
- ⑥ 海上交通に関する法秩序の維持
- ⑦ 救助・救急活動の充実
- ⑧ 被害者支援の推進
- ⑨ 船舶事故等の原因究明と事故等防止
- ⑩ 海上交通の安全対策に係る調査研究等の充実

第1節 海難のない社会を目指して

第11次交通安全基本計画においては、海上交通の安全についての船舶事故隻数の減少、ふくそう海域における大規模な船舶事故の防止、高い救助率の維持確保の3つの目標を立て、船舶の種類、通航実態、事故の特徴等を捉えた様々な安全対策を継続して実施してきた結果、船舶事故隻数は着実に減少(令和2年1,954隻に対し令和6年1,817隻)しているとともに、ふくそう海域における大規模な船舶事故は発生していない。しかしながら、我が国の経済活動や国民生活を支える上で海上交通の安全確保は極めて重要であり、一たび海上における船舶の事故が発生した場合には、人命に対する危険性が高いことはもちろん、大量の油が流出するなどの二次災害や航路の閉塞等、我が国の経済と自然環境に甚大な影響を及ぼすことにもつながりかねない。

このため、一層の海上交通の安全確保を目指して、第12次交通安全基本計画においても引き続き、船舶の通航実態、事故の原因や特徴等を捉えた効果的な安全対策を推進していく必要がある。

また、事故の発生を減らすことはもとより、人命救助体制の強化や救命設備等の普及等を通じ、発生した海難による死者・行方不明者を最小限にすることも重要である。

Ⅰ 海難*の状況

令和3年から6年までの船舶事故隻数は、年平均1,854隻であり、それ以前の5年間の年平均と比べると、約9%減少している。

船舶事故の発生海域をみると、沿岸海域(距岸20海里以内)で発生する割合が極めて高く、その中でもふくそう海域及びその周辺海域で全体の約4割が発生しており、ふくそう海域における衝突・乗揚事故については、減少している。

事故船舶の種類別の割合をみると、小型船舶*が全体の約8割を占め、特にプレジャーボートが全体の約5割を占めている。

船舶事故の原因は、見張り不十分、機関取扱不良等のヒューマンエラーによるもの が約7割を占めている。

令和3年から6年までの船舶事故又は船舶からの海中転落による死者・行方不明者数は、年平均137人であり、それ以前の5年間の年平均と比べると、約6%減少している。

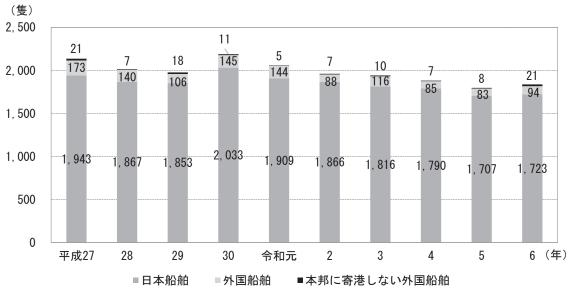
^{*}本計画で扱う海難とは船舶事故及び人身事故を指すものとし、それぞれ以下のとおり。 船舶事故:海上において船舶に次のいずれかに該当する事態が生じた場合をいう。

[●] 衝突・乗揚・転覆・浸水・爆発・火災・行方不明

[●] 機関、推進器、舵等の損傷又は故障その他運航不能等

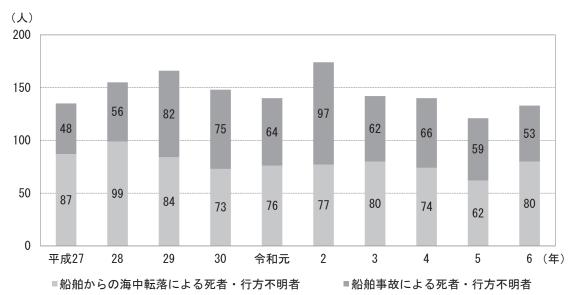
人身事故:海上又は海中において次のいずれかに該当する事態が生じた場合をいう。

[●] 船舶事故によらない乗船者の海中転落、負傷、病気、中毒等

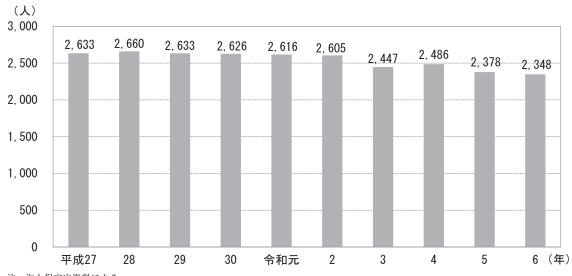

[●] 海浜等において発生した乗船者以外の者の負傷、溺水、帰還不能等

^{**} プレジャーボート (資格不要であるミニボート、カヌー、ディンギーヨット等も含む。)、漁船及び遊漁船

令和3年から6年までの人身事故者数は、年平均2,415人であり、それ以前の5年間の年平均と比べると、約8%減少している。


人身事故の発生海域をみると、船舶事故と同様に沿岸海域(距岸 20 海里以内)で発生する割合が極めて高く、さらに距岸 3 海里以内の海域が全体の約 9 割を占めている。

事故隻数の推移(※施策対象は「本邦に寄港しない外国船舶」を除くものとする。)


注 海上保安庁資料による。

船舶事故又は船舶からの海中転落による死者・行方不明者の推移

注 海上保安庁資料による。

人身事故者数の推移

注 海上保安庁資料による。

Ⅱ 第 12 次交通安全基本計画における目標

- ① 我が国周辺で発生する船舶事故隻数(本邦に寄港しない外国船舶によるものを除く。)を令和7年と比較し約1割削減を目指す。
- ② ふくそう海域における航路を閉塞するような社会的影響が著しい大規模な船舶 事故の発生数をゼロとする。
- ③ 海難における死者・行方不明者を減少させるためには、高い救助率を維持確保 することが重要であることから、救助率 95%以上とする。

第2節 海上交通の安全についての対策

I 今後の海上交通安全対策を考える視点

近年、船舶事故隻数は減少傾向で推移し、また、ふくそう海域における大規模な船舶事故も発生していない状況を鑑みると、これまでの対策は海上交通の安全確保に有効であったと認められる。

しかしながら、依然として見張り不十分や操船不適切といったヒューマンエラーによる事故が全体の7割以上を占め、一たび大規模な船舶事故や旅客船の事故が発生すれば、多数の死傷者が生じるおそれがあり、一層の海上交通の安全確保に取り組んでいく必要がある。

また、救助率向上のために、海難が発生した場合の乗船者等の迅速かつ的確な捜索・ 救助活動を実施するための人命救助体制の充実・強化を図るとともに、ライフジャケットの着用推進等、自己救命対策の強化を引き続き図っていく必要がある。そこで第12次交通安全基本計画では、次のような視点を踏まえて、今後の対策を推進していくこととする。

1 ヒューマンエラーによる事故の防止

船舶事故はヒューマンエラーに起因するものが極めて多いことから、ヒューマンエラーによる事故を防止するための対策を推進する。特に船舶事故の多数を占める小型船舶への対策の強化を図る。

2 ふくそう海域における大規模な船舶事故の防止

輸送効率の向上を図るための船舶の大型化や激甚化する自然災害等により、船舶が ふくそうする海域において一たび事故を発生させた場合には、海上輸送の遮断、航路 の閉塞といった大規模な船舶事故に拡大する蓋然性が高いことから、ふくそう海域に おける安全対策の強化を図る。

3 旅客船の事故の防止

不特定多数の乗客に被害が生じる可能性がある旅客船の事故を防止するため、事業者に対する指導監督の充実・強化等の対策の強化を図る。

4 人命救助体制及び自己救命対策の強化

海難が発生した場合に乗船者等の迅速かつ的確な捜索・救助活動を実施するための 人命救助体制の充実・強化を図るとともに、ライフジャケットの着用推進等、自己救 命対策の強化を推進することで、救助率の向上を図る。

Ⅱ 講じようとする施策

【第 12 次交通安全基本計画における重点施策及び新規施策】

- ふくそう海域等の安全性の確保(1(2)ア、ウ)
- \bigcirc ヒューマンエラーの防止 (3(1), 5(1) ?)
- 船舶の運航管理の充実等による安全の確保(3(1)、(2)、(3)、(8))
- 船舶の安全基準の整備等による安全の確保(4(1)、(2))
- 小型船舶等の安全対策(5(1)ア、イ、(2)、(3)、(4))
- ライフジャケット着用率の向上(5(1)ウ)
- 海難情報の早期入手体制の強化(7(1))
- 迅速的確な救助勢力の体制充実・強化(7(2))

1 海上交通環境の整備

船舶の大型化、海域利用の多様化、海上交通の複雑化や激甚化する自然災害等を踏まえ、船舶の安全かつ円滑な航行、港湾における安全性を確保するため、航路、港湾、漁港、航路標識等の整備を推進するとともに、海図、水路誌、海潮流データ等の安全に関する情報の充実及びICTを活用したリアルタイムの監視・情報提供体制の整備を図る。

また、海上交通環境の変化には常に注視し、必要に応じて現行制度の見直しの検討にも取り組む。

(1)交通安全施設等の整備

ア 開発保全航路の整備、港湾の整備等交通安全施設の整備

港湾における船舶の安全かつ円滑な航行や荒天時等における海難の発生を防止する観点から、船舶の大型化や高速化を勘案しつつ、防波堤、航路及び泊地の整備を推進するとともに、海象情報をホームページで公表するなど情報提供に努める。

イ 漁港の整備

漁船の安全な航行や荒天時等における漁船の安全な避難を可能とする防波堤、 航路及び泊地等の整備を推進する。

ウ 航路標識等の整備

近年、激甚化する台風等の自然災害に伴う航路標識の倒壊等を未然に防止し、 災害時でも海上交通安全を確保するために、航路標識等の強靱化を図る。

エ 港湾における大規模災害対策の推進

災害に強い海上輸送ネットワークを構築するため、港湾施設の耐震性向上や「粘 り強い構造」の防波堤、及び津波・高潮・高波等による被害から背後地域を守る 海岸保全施設等の整備を推進するとともに、港湾の事業継続計画(港湾 BCP*)の改善や関係機関と連携した防災訓練の実施等を推進する。

オ 漁港の耐震性の強化

地震等の災害時に地域の防災拠点や水産物の流通拠点となる漁港において、地域の防災計画とも整合性を図りつつ、救援船等に対応可能な泊地、耐震性を強化した岸壁、輸送施設等の整備を推進する。

また、漁港構造物の耐震性についての現状の把握に努めるとともに、耐震化等の技術開発を行う。

カ 漂流ごみの回収による船舶交通安全の確保

東京湾、伊勢湾、瀬戸内海、有明海、八代海の閉鎖性海域(港湾区域、漁港区域を除く。)に配備している海洋環境整備船により、海面に漂流する流木等のごみや船舶等から流出した油の回収を実施し海域環境の保全を図るとともに船舶の安全かつ円滑な航行を確保する。

キ 港湾施設の老朽化対策の推進

港湾の施設単位ごとに作成する維持管理計画や港湾単位で作成する予防保全計画に基づいて、老朽化や社会情勢の変化に伴って機能が低下した施設の利用転換やスペックの見直し等を計画的に進め、より効率的なふ頭へ再編するなど、戦略的なストックマネジメントによる老朽化対策を推進する。

(2) ふくそう海域等の安全性の確保

ア ふくそう海域における安全性の確保

船舶交通がふくそうする海域において、航路を閉塞するような大規模な船舶事故が発生した場合には、人命、財産、環境の損失といった大きな社会的ダメージを引き起こすだけでなく、海上交通を遮断し、我が国の経済活動を麻痺させるおそれがある。

このため、海上交通センターから危険防止のための情報提供・勧告・指示を行うことにより、船舶交通の安全確保を推進する。

また、同センターのレーダーの高機能化等による監視機能の強化を推進し、同センターの機能向上と信頼性の向上を図る。

さらに、巨大船、危険物積載船、あるいは外国船舶等が多数通航する海域においては、航行船舶の指標となるバーチャル AIS 航路標識を整備する。

津波等の災害発生時においては、船舶への警報等の伝達、避難海域等の情報提供を迅速確実に実施するとともに、平時における混雑緩和に向けた情報提供を的確に実施し、安全性を向上させ物流の一層の効率化を図ることによる国際競争力の向上を実現するため、三大湾(東京湾、伊勢湾及び大阪湾)における海域監視

-

^{*} BCP: Business Continuity Plan

体制の強化に取り組む。

イ その他の船舶交通量が多い海域における安全性の確保

東京湾から四国沖に至る船舶交通量が多い海域は、複雑な進路交差が生じるため、死者、行方不明者を伴うなどの重大海難が発生する蓋然性が高いことから、バーチャル AIS 航路標識等を活用した経路指定及び推薦航路の設定による整流化に取り組み、安全性の向上を図る。

ウ 荒天時の走錨等に起因する事故防止対策

荒天時における船舶の走錨等に起因する事故を防止するため、走錨等により船舶が衝突するおそれのある施設の周辺海域において、錨泊制限等の対策を継続的に実施するとともに、気象・海象や船舶の状況を踏まえた各船の走錨リスクを判定するシステムの開発・普及や海域監視体制の強化を図るなど、事故防止に係る取組を推進する。

(3) 海上交通に関する情報提供の充実

ア 航行支援システムを用いた情報提供の実施

船舶の動静を把握した上で行う情報提供や全国各地の灯台等で観測した気象・海象の現況、その他、船舶交通の安全のために必要な情報の提供を、沿岸域情報提供システム(海の安全情報)や船舶自動識別装置(AIS*)、無線等、多様な手段を用いて引き続き実施していくとともに、利用者のニーズや利便性を向上させるため、所要の見直しを図る。

また、AIS 情報を活用した乗揚げ防止及び橋梁への衝突防止対策の推進を図る。

イ 気象情報等の充実

海上交通に影響を及ぼす台風、強風、波浪、高潮、霧、津波、火山噴火等の自然現象を的確に把握し、特別警報・警報・予報等の適時・適切な発表及び迅速な 伝達に努めるとともに、これらの情報の質的向上に努める。

また、気象、津波、火山現象等に関する観測施設を適切に整備・配置し、維持するとともに、防災関係機関等との間の情報の共有やICTを活用した観測・監視・通報体制の強化を図るものとする。これらの情報のより有効な活用が図られるよう広報や講習会等を通じて気象知識の普及や情報の利活用促進に努める。

ウ 異常気象時における安全対策の強化

台風等の異常な気象又は海象、海難の発生等の事情により、船舶交通の危険を 生じるおそれのある場合、注意喚起・安全指導・勧告等を行い、船舶に必要な措 置を講じさせ船舶交通の安全を確保する。

エ 航海安全情報の充実及び利便性の向上

海難の未然防止や安全で効率的な航海の促進を図るため、航海用海図(紙海図

.

^{**} AIS : Automatic Identification System

及び電子海図)及び航海用刊行物(水路誌等)を的確に整備する。これらの航海 用海図等を最新のものに維持するための情報として水路通報及び電子水路通報を 提供し、航路障害物の存在等、船舶が安全に航行するため緊急に必要な情報を航 行警報により提供するなど、適切な手段で最新維持を図る。

特に、電子海図、水路誌等については、今後予定されている新国際基準の実運 用に備え、的確に対応する。

また、海洋状況表示システム (海しる) 等により、水路通報、航行警報の文字 情報を地図上に図示したビジュアル情報や船舶通航量等様々な情報をインター ネットで提供し、船舶航行の安全を図る。

このほか、安全な航海、海難発生時の効率的な海難救助等に対応するために、シミュレーション等による海潮流データを提供する体制の充実強化を図る。

(4) 高齢者、障害者等に対応した旅客船ターミナルの整備

港湾においては、利用者の安全を確保するため、波浪の影響による浮桟橋の動揺や潮位差による通路の勾配の変化等、特有の要因を考慮する必要がある。そのため、高齢者、障害者等も含め全ての利用者が旅客船ターミナルを安全かつ身体的負担の少ない方法で利用・移動できるよう段差の解消、視覚障害者誘導用ブロックの整備等による施設のバリアフリー化を推進する。

2 海上交通の安全に関する知識の普及

海上交通の安全を図るためには、海事関係者のみならず、マリンレジャー愛好者、 更には広く国民一人一人の海難防止に関する意識を高める必要がある。そのため、関係団体との連携強化や SNS の活用に加え、影響力のあるインフルエンサーやマリンレジャー用品の販売事業者やフリーマーケット運営会社と連携した情報発信等、あらゆる手段により、海難防止思想の普及に努める。

さらに、各種船舶の特性や海難の実態に即したより具体的、より効果的な知識や技能の習得及び向上を図る。

(1)海難防止思想の普及

海難防止強調運動(海の事故ゼロキャンペーン)等を通じて、広く海難防止思想の普及及び高揚を図る。また、海難防止講習会、訪船指導等を通じて、関係省庁や民間団体と連携し策定した「ウォーターセーフティガイド」等を活用し、船舶操縦者等への海難防止に関する知識・技能の習得及び向上を図る。

(2) 外国船舶に対する情報提供等

我が国周辺海域の地理等に不案内な外国船舶に対して、訪船し、又はインターネットを活用し、若しくは代理店と協力し、航行安全上必要な情報を提供する。

3 船舶の安全な運航の確保

船舶の安全な運航を確保するため、船舶運航上のヒューマンエラーの防止、船員や海上運送事業者等の資質の向上、運航労務監理官による監査、事故の再発防止策の指導・徹底、運輸安全マネジメント評価等を推進するとともに、我が国に寄港する外国船舶の乗組員の資格要件等に関する監督を推進する。

(1) ヒューマンエラーの防止

船舶事故の主な原因は、見張り不十分、操船不適切、機関取扱不良といったヒューマンエラーが大半である。その未然防止を図るため、自動運航船の実用化に向けた環境整備を始め、事業者による自主的な船員教育の推進、AIS の搭載促進等の技術の活用・普及、船舶への訪船や運輸安全マネジメント評価等の様々な機会を活用した情報提供・注意喚起に取り組む。

(2) 船舶の運航管理等の充実

ア 旅客船事業者等に対する指導監督の充実強化

旅客船事業者等に対して、抜き打ちやリモートによる監査や通報窓口の活用により効果的かつ効率的な監査を実施するとともに、運航労務監理官の監査能力の向上に取り組み、事業者に対する指導監督の強化を図る。また、行政処分等を行った事業者については、改善が確認されるまで徹底的にフォローアップを行い、事業者による法令及び安全管理規程の遵守の徹底を図る。

イ 事故の再発防止策の徹底

旅客船等の事故が発生した場合には、事故の原因を踏まえた適切な再発防止策 を策定し、運航労務監理官による監査、指導を通じて、その対策の徹底を図る。

また、運航労務監理官と船舶検査官の連携を密にし、必要な情報共有や協同での立入りを行うことにより、事故等発生後の運航再開前に、ハード・ソフトの両側面において運航事業者が適切な再発防止策を講じることを確保する。

さらに、事故の内容や発生頻度により必要な場合は、事業者団体等を通じて注 意喚起を行い、事業者や一般利用者の事故防止意識の啓発に努める。

ウ 運輸安全マネジメント評価の推進

旅客船事業者等の安全管理体制の構築・改善状況を国が確認する運輸安全マネジメント評価を引き続き実施する。また、運輸安全マネジメント評価を通じて、運輸事業者による防災意識の向上及び事前対策の強化等を図り、運輸防災マネジメントの取組を強化するとともに、感染症による影響を踏まえた運輸事業者の安全への取組及び事業者によるコンプライアンスの徹底を意識付ける取組を的確に確認する。

エ 安全統括管理者及び運航管理者等に対する安全管理体制の強化

安全統括管理者及び運航管理者に対して、実務経験に加えて試験の合格と2年 ごとの講習の受講を義務付ける資格者証制度を着実に実施することにより、安全 管理体制の強化を図る。

オ 安全情報の公表

旅客船利用者が、安全への取組状況によって運航事業者を適切に選択すること を可能とするため、運航事業者及び国による安全情報を公表することで、運航事 業者の安全意識向上を図る。

(3) 船員の資質の確保

「1978年の船員の訓練及び資格証明並びに当直の基準に関する国際条約」(STCW条約*)及び1995年の漁船員の訓練及び資格証明並びに当直の基準に関する国際条約(STCW-F条約*)に準拠した、船舶職員及び小型船舶操縦者法(昭和26年法律第149号)に基づく海技免許の付与及び海技免状の更新、各船員教育機関における新人教育及び再教育を適切に実施することによって、海技士の知識技能の維持向上を図る。

また、小型旅客船に乗り組む船員の資質の向上を図るため、事業用操縦免許について講習課程の拡充及び乗船履歴に応じた船舶の航行区域の限定、海域の特性等に関する教育訓練の実施等、新たな制度を適切に運用し、小型船舶操縦者の安全意識の向上を図る。

また、船員法(昭和22年法律第100号)に基づく発航前検査の励行、操練の適切な実施、航海当直体制の確保、船内の巡視制度の確立等について、運航労務監理官による監査等を徹底し、船員の安全意識等の維持及び向上を図る。

(4) 船員災害防止対策の推進

安全衛生管理体制の整備等を通じ船内の労務管理等の不備等に起因する海難を防止するため、船員災害防止活動の促進に関する法律(昭和42年法律第61号)に基づき策定している船員災害防止基本計画及び船員災害防止実施計画の着実な実施により、船員災害防止対策の推進を図る。

(5) 水先制度による安全の確保

ふくそう海域等における船舶交通の安全を確保する役割を果たしている水先人の 免許制度及び強制水先制度を適切に運用する。また、船舶を安全かつ速やかに導く ための専門的な能力を有する水先人の安定的な確保・育成対策を促進することによ り、水先制度の充実を図る。

(6) 外国船舶の監督の推進

船員に求められる訓練、資格証明及び当直基準については、STCW 条約等の国際条約で定められているが、我が国近海において、当該条約基準を満たしていない

^{**} STCW 条約: The International Convention on Standards of Training, Certification and Watchkeeping for Seafarers, 1978

^{**} STCW-F 条約: The International Convention on Standards of Training, Certification and Watchkeeping for Fishing Vessel Personnel, 1995

船舶(サブスタンダード船)による海難が少なからず発生していることから、これらの海難を防止し、船舶航行の安全を図るため、関係条約に基づき外国船舶の監督 (PSC*)を推進する。さらに、東京 MOU*の枠組みに基づき、アジア太平洋域内の加盟国と協力して、リスクの高いサブスタンダード船に対する検査の頻度を増やすなど、効果的な PSC を実施し、サブスタンダード船の排除を図る。

(7) 旅客及び船舶の津波避難態勢の改善

東日本大震災における大津波により、多くの船舶被害等が発生したことや、南海トラフ地震の今後30年以内の地震発生確率のランクが最も高い「Ⅲランク」(文部科学省地震調査研究推進本部(令和7年9月26日公表))であること等を踏まえ、旅客船事業者及びタンカー等の危険物輸送事業者に対する支援を実施する。具体的には、津波避難の実効性を向上させるため、津波避難の長期化への備え、陸上施設を含めた避難訓練の実施等津波避難マニュアルの継続的な改善を支援する。

(8) 新技術の導入促進

内航を始めとする船舶への新技術の導入促進による労働環境改善・生産性向上、 ひいてはそれによる安全性向上を図る。

また、必要に応じて新技術に係る基準の策定、技術の進展に応じて実船での検証 等により安全性を確保した上で乗組み基準の見直し、船舶検査の合理化等の検討を 進める。

(9) ダイビング船の安全対策

ダイビング船安全対策ガイドラインを活用して安全啓発活動を行い、ダイビング 船の航行の安全確保を図る。

4 船舶の安全性の確保

船舶の安全性を確保するため、国際的な協力体制の下、船舶の構造、設備、危険物の海上輸送及び安全管理システム等に関する基準の整備並びに検査体制の充実を図るとともに、我が国に寄港する外国船舶の構造・設備等に関する監督を推進する。

(1) 船舶の安全基準等の整備

船舶の安全性を確保するため、国際海事機関(IMO*)において船舶の構造、設備等の安全基準の整備について検討されており、我が国はこれらの動向に的確に対応するとともに、技術革新、海上輸送の多様化等の情勢の変化に対応するため、所要の安全基準や検査体制の整備を図る。

ヒューマンエラーの防止による海上安全の向上や船員労働環境改善等が期待される自動運航船については、令和12年頃までの本格的な商用運航の実現を目指し、

^{*} PSC: Port State Control

^{**} 東京 MOU: Memorandum of Understanding on Port State Control in the Asia-Pacific Region

^{*} IMO: International Maritime Organization

令和6年6月に設置された「自動運航船検討会」を通じて国内制度の検討・整備を進めるとともに、IMOにおける国際ルール策定作業を主導する。また、2050年カーボンニュートラルの実現に必要不可欠な水素・アンモニア等を燃料とするゼロエミッション船舶の普及の前提である安全確保に向けて、こうした燃料を使用する船舶の安全ガイドラインの策定及び関連する安全基準に係る国際条約改正の検討に参画し、我が国の技術的な知見の蓄積がこれらの検討に活用されるよう努める。

また、旅客船等の海難事故時の乗客者の安全性を確保するため、救命設備等安全設備の義務化を順次進めることにより、旅客の安全確保を図る。

さらに、バリアフリー法に基づく旅客船のバリアフリー化について、旅客船事業者が円滑に対応できるよう、ユニバーサルデザインの観点を考慮したガイドラインを周知する。

(2) 船舶の検査体制の充実

近年の技術革新、海上輸送の多様化に応じた従来の設計とは異なる船型を有する船舶の増加や、国際的な規制強化に伴い、高度で複雑かつ広範囲にわたる検査が必要となっている。こうした状況に適切に対応していくため、ISO9001 に準じた品質管理システムに則り、我が国の船舶検査体制の品質の維持向上を図る。

加えて、海難事故は、ハード・ソフト両面に起因するものが少なくないことから、 従来のハードを中心とした定期的な検査だけでなく、運航中(入港時)に、ハード・ ソフト両面からの訪船指導(立入検査)を実施することにより、船舶のより一層の 安全確保を図る。訪船指導(立入検査)の実施にあたっては、引き続き船舶検査官 及び運航労務監理官が一体となって取り組むこととする。

また、危険物の海上輸送について、IMOにて定められる国際的な安全基準に基づき国内規則の整備を図るとともに、危険物運搬船に対して運送前の各種検査や立入検査を実施することにより、安全審査体制の充実を図り、海上輸送における事故防止に万全を期す。

さらに、海上における人命の安全及び海洋環境保全の観点から、船舶及びそれを管理する会社の総合的な安全管理体制を確立するための国際安全管理規則(ISMコード*)については、ヒューマンエラーの防止や企業の安全重視風土の確立に当たり極めて有効である。このため、同コード上強制化されていない内航船舶に対して、事業者等が任意で構築した安全管理システムを認証するスキームを運用しているところ、引き続き当該システムの審査を実施する。

(3) 外国船舶の監督の推進

船舶の構造・設備等については、SOLAS条約*等の国際条約に定められているが、

^{**} ISM コード: International Safety Management Code

^{**} SOLAS 条約: The International Convention for Safety of Life at Sea

我が国近海において、依然としてサブスタンダード船による海難が発生している。 重大事故が発生した場合には人命の安全や海洋環境等に多大な影響を及ぼす可能性 があることから、これらの海難を防止し、船舶航行の安全を図るため、関係条約に 基づき PSC を推進する。

さらに、東京 MOU の枠組みに基づき、アジア太平洋域内の加盟国と協力してリスクの高いサブスタンダード船に対する検査の頻度を増やすなど、効果的な PSC を実施し、サブスタンダード船の排除を図る。

5 小型船舶等の安全対策の充実

小型船舶が船舶事故全体の約8割を占めるとともに、その原因の多くがヒューマン エラーであることから、マリンレジャー愛好者、漁業関係者自らが安全意識を高める ための取組を、関係機関が連携して推進することとする。

(1) 小型船舶の安全対策の推進

ア ヒューマンエラーによる船舶事故の防止

小型船舶の船舶事故の主な原因は、見張り不十分、操船不適切、機関取扱不良、 船体機器整備不良といったヒューマンエラーによるものが大半である。その未然 防止を図るため、小型船舶操縦者による自主的な安全対策の促進、事故防止に資 する技術の活用・普及、情報提供等を通じた安全意識の向上に取り組む。

(ア) 自主的な安全対策の推進

小型船舶操縦者は発航前に船体・機関等の検査を実施しなければならないが、これらの検査を操縦者が自ら的確かつ容易に行うことができるよう、使いやすい発航前検査チェックリストの配布や「ウォーターセーフティガイド」の活用を促進する。また、航行中に不具合が発生した場合であっても、操縦者が自ら必要な対処を行えるよう、トラブルシュートマニュアルを配布し、その活用を促進する。

(イ) 事故防止に資する技術の活用と普及

小型船舶の衝突事故を防止するため、衝突防止対策として、船舶同士が互いに動静を把握するための簡易型 AIS 等の普及促進を引き続き図るとともに、近年のスマートフォンの急速な普及を踏まえ、スマートフォンを活用して他船の動静把握、衝突防止警報機能、船舶同士の通信等が可能となるアプリケーションの普及を推進する。

(ウ) 効果的な情報の提供・注意喚起

訪船指導等の機会を利用するほか、海の安全情報のようにインターネットも活用して、安全に関する情報の効果的な提供や注意喚起を実施し、小型船舶操縦者等の安全意識の向上を図るとともに、事故防止策等の情報提供・注意喚起を行う。

特に、小型船舶は、大型船舶に比べて耐航性や情報入手手段の面で劣るため、 気象の急変や危険海域の存在を速やかに認知できるよう、海の安全情報による スマートフォンを活用した情報提供の充実やメール配信機能等を活用した情報 提供手段の充実を進めることで、安全対策の一層の強化を図る。

イ 小型船舶操縦者の遵守事項等の周知・啓発

海難防止講習会や訪船指導等の様々な機会を活用して小型船舶操縦者の遵守事項の啓発を行うとともに、遵守事項違反制度の適切な運用により小型船舶操縦者の資質向上を図る。

ウ ライフジャケット着用率の向上

船舶職員及び小型船舶操縦者法施行規則(昭和 26 年運輸省令第 91 号)の一部改正(平成 30 年 2 月 1 日施行)に伴い、船長は、小型船舶の暴露甲板にいる乗船者に対し、従前よりライフジャケットの着用義務が課されている場合(水上オートバイに乗船している場合等)以外についても、ライフジャケットを着用させることが義務付けられた。引き続き、関係省庁等が連携して、海難防止強調運動(海の事故ゼロキャンペーン)や海難防止講習会、小型船舶安全キャンペーン、訪船指導等の様々な機会を活用し、ライフジャケットの着用効果の周知・啓発とその着用の指導徹底の取組を強化する。

エ 河川等における事故防止対策の推進

河川・湖における落水、運航ルール不遵守といった事故原因を踏まえ、レジャー 愛好者及び漁業者に対しライフジャケットの着用及び河川・湖ごとに定められて いる運航ルール等の遵守について、関係者が連携して安全周知活動を行う。

(2) プレジャーボートの安全対策の推進

ア プレジャーボートの安全対策

プレジャーボートの船舶事故は全体の約5割を占めており、特に機関故障事故が多く、発航前検査では防止することができない事故が、一定数発生している現状を踏まえ、関係省庁・民間団体と連携し、整備事業者等による定期的な点検整備の有用性について訪船指導等を通じた周知に加え、SNSを活用した効果的な周知を行い、同点検整備の実施を推進する。

イ ミニボートの安全対策

ミニボート(長さ3m未満、機関出力1.5kW未満で、検査・免許が不要なボート)は近年多い事故隻数で推移しており、特に転覆事故が多く発生している。その原因の多くは気象・海象不注意であることから、海に関する基礎知識やミニボートの特性等を正しく理解していないユーザーの資質向上を図るため、ミニボートを安全に安心して楽しむための注意事項を記した「ウォーターセーフティガイド」の普及促進を図る。また、安全安心な利用を推進するため、民間関係機関と連携し、ユーザーに対して、ユーザー向け安全マニュアル等を使用し、海上・水上の

ルールやマナー等の周知・啓発の取組を行う。

(3) 漁船等の安全対策の推進

漁船の船舶事故は、衝突が最も多く、見張り不十分、操船不適切のヒューマンエラーを原因とするものが大半を占めている。このような状況から、関係省庁が連携し、漁業関係者を対象とした海難防止講習会や訪船指導等を通じて、特に見張りの励行、ライフジャケットの常時着用について指導を強化し、漁船等の安全対策を推進する。

(4) 多様化・活発化するウォーターアクティビティの安全対策

近年、カヌー、SUP、スノーケリング、遊泳、釣り等の免許や検査が不要なウォーターアクティビティが多様化・活発化しており、多くの海難が発生している。このため、関係省庁や民間団体と連携し、各種アクティビティの特性や注意点について意見交換等を行い策定した「ウォーターセーフティガイド」の内容充実及び普及を更に促進する。

(5) 放置艇削減による安全対策の推進

ア ボートパーク等の整備

各地で課題となっている放置艇問題を解消し、港湾等の公共水域の秩序ある利用を図るために、既存の静穏水域の護岸等を活用した係留施設や公共空地等を活用した陸上保管施設等のボートパークの整備を、公共事業により更に推進していく。

また、民間、3セクマリーナの整備については、「公共施設等の建設、維持管理、運営等を民間資金、経営能力及び技術的能力を活用して行う手法」(PFI*)を含む民間活力を積極的に導入して推進する。

プレジャーボート活動の安全を確保し、秩序ある水域の利用を図れるよう、ボートパーク等の位置及びプレジャーボートの活動水域の設定に十分留意するとともに、ボートパーク等内の安全性確保を図る。

イ フィッシャリーナの整備

漁港においては、漁船とプレジャーボート等の秩序ある漁港の利用を図るため、 プレジャーボート等の収容施設の整備を推進する。

ウ 係留・保管能力の向上と効果的な規制措置の実施

放置艇問題の解消のために、既存の係留・保管施設の収容余力の活用及び管理 上支障のない水域の有効活用の推進による係留・保管能力の向上と併せて、港湾 法(昭和25年法律第218号)及び漁港及び漁場の整備等に関する法律(昭和25 年法律第137号)に基づく、船舶等の放置を明確に禁じ、水域管理者による処分 等の権限の根拠となる「放置等禁止区域等の指定」を津波・高潮防災や景観形成 の観点等も考慮した上で、積極的に推進する。

-

^{*} PFI: Private Finance Initiative

6 海上交通に関する法秩序の維持

海上交通に係る法令違反の指導取締りを行い、海上交通に関する法秩序を維持する。 船舶交通がふくそうする航路等における航法に関する指導取締りの強化及び無資格運 航や区域外航行のような海難の発生に結び付くおそれのある事犯に関する指導取締り の実施に加え、特に海上輸送やマリンレジャー活動が活発化する時期等には、指導取 締りを強化し、海上交通に関する法秩序の維持を図る。

7 救助・救急活動の充実

海難による死者・行方不明者を減少させるためには、海難情報の早期入手、精度の高い漂流予測、救助勢力の早期投入、捜索救助・救急救命能力の強化等が肝要である。このため、ヘリコプターの機動性、高速性等を活用した機動救難体制の拡充によるリスポンスタイムの短縮、救急救命士・救急員による高度な救急救命体制の充実を図るとともに、関係機関及び民間の海難救助団体等と連携した救助・救急活動の円滑化を推進する。

また、新たに開発した、国際基準に基づく「捜索区域設定支援プログラム」を活用し、効率的かつ組織的な海難捜索活動を強化する。

さらに、リアルタイムな海潮流の把握を進め、レスキューブイデータ等による海難 海域の海潮流データの充実を図るとともに、漂流予測プログラムによる漂流予測結果 を蓄積・分析し、漂流予測の精度向上をより一層推進する。

これらにより、海中転落の救助率が低い20トン未満の船舶における海中転落者の 救助率の向上を含む、全体の救助率の向上を目指す。

(1)海難情報の早期入手体制の強化

海中転落者の海上における生存可能時間や救助に要する時間等を勘案し、生存状態で救助するために、海難発生から海上保安庁が情報を入手するまでの所要時間を 2時間以内にすることを目標としているが、海上保安庁が2時間以内に情報を入手 する割合(関知率)は、約79%となっており、中でも漁船は約65%と低くなって いる。

このため、引き続き広く一般に「緊急通報用電話番号『118番』、聴覚や発話に障害を持つ方を対象とした『NET118』の有効活用」、「防水パック入り携帯電話等による連絡手段の確保」、「緊急通報情報システムでの通報位置把握のための携帯電話の GPS 機能を ON にしての通報」及び「海難が発生した際に遭難を知らせる携帯用遭難警報信号発信装置の活用」に関する指導・啓発及び広報活動等を実施していくとともに、水産関係機関への訪問指導等を行い、特に漁業関係者に対する安全意識の啓発強化に取り組む。

このような施策を推進することにより、海難発生後2時間以内での海上保安庁の 関知率を85%以上にすることを目指す。 また、海難救助を迅速かつ的確に行うために、船舶・航空機等からの遭難警報の受信・解析・配信を行うコスパス・サーサットシステムにおいて、中軌道衛星を用いた MEOSAR*システム等を活用するとともに、通報者がスマートフォンを使用し、現場の状況を映像でリアルタイムに伝えることができる機能等を有した「Live118」を活用することで、海難情報を早期かつ正確に入手する体制の構築を図る。

(2) 迅速的確な救助勢力の体制充実・強化

海難発生情報の関知後、いかに早く救助勢力を現場に到着させるかが救助率の向上に必要不可欠であり、海難の多くが距岸 20 海里未満の沿岸部において発生していることから、ヘリコプターを活用した救難体制や救急救命士等による救急救命体制の充実を図る。

特に、救急救命士については、年々、実施できる救急救命処置範囲の拡大・高度 化が進められていることから、救急救命士の技能を向上させ、実施する救急救命処 置業務の質を医学的観点から保障するメディカルコントロール体制と支援体制の拡 充を推進する。

また、老朽・旧式化が進んだ巡視船艇・航空機の代替整備等に併せて速力・夜間 捜索能力の向上等の高性能化に努めることで、現場海域への到達時間や捜索に要す る時間を短縮するなど救助勢力の充実・強化を図る。

さらに、洋上で発生した傷病者に対し、医師による迅速な医療活動を行う洋上救 急体制の充実・強化に向けて、関係団体との協力を図る。

そのため、関係省庁、地方公共団体及び民間の海難救助団体等と海難救助に係る 地域共助機能の充実・強化を図る。

8 被害者支援の推進

船舶事故により、第三者等に与えた損害に関する船主等の賠償責任に関し、保険契約の締結等、被害者保護のための賠償責任保障制度の充実に引き続き取り組む。

また、プレジャーボートによる人身事故や物損等で生じた損害の賠償に対処するため、船舶検査等の機会を捉え、プレジャーボートのユーザーに対しプレジャーボート保険を周知し、保険加入の促進を図る。

さらに、公共交通事故による被害者等への支援の確保を図るため、国土交通省に設置した公共交通事故被害者支援室では、①公共交通事故が発生した場合の情報提供のための窓口機能、②被害者等が事故発生後から再び平穏な生活を営むことができるまでの中長期にわたるコーディネーション機能(被害者等からの心身のケア等に関する相談への対応や専門家の紹介等)等を担うこととしている。引き続き、関係者からの

_

^{**} MEOSAR: Mid-Earth Orbiting Search and Rescue

助言を頂きながら、外部の関係機関とのネットワークの構築、公共交通事故被害者等 支援フォーラムの開催、公共交通事業者による被害者等支援計画作成の促進等、公共 交通事故の被害者等への支援の取組を着実に進めていく。

9 船舶事故等の原因究明と事故等防止

(1)事故等の原因究明と事故等防止

船舶事故及び船舶事故の兆候(船舶インシデント)の原因究明を更に迅速かつ的確に行うため、調査を担当する職員への専門的な研修を充実させ、調査技術の向上を図るとともに、ドローン、3Dスキャン装置等を用いた3次元測量やCTスキャン装置を用いた非破壊検査による科学的かつ客観的な調査を推進し、解析手法の高度化を図り、その成果を原因の究明に反映させる。

事故等調査で得られた結果等に基づき、事故等の防止又は事故が発生した場合の被害の軽減のため、必要に応じて、国土交通大臣又は原因関係者へ勧告し、また国土交通大臣又は関係行政機関の長へ意見を述べることにより、必要な施策又は措置の実施を求め、海上交通の安全に寄与する。

これまでに蓄積された事故等データを基に、地図上に過去の船舶事故等の発生場所を表示するとともに海域の危険性等も一目で分かるようにした「船舶事故ハザードマップ」や、機関の要目や故障部位(部品)、付属機器別に、機関故障に起因する事故等の情報を検索できる「機関故障検索システム」及び「小型船舶機関故障検索システム」を運用する。加えて、過去の事故等調査の結果を有効活用する観点から、関係者のニーズを踏まえ、特定の事故類型の傾向・問題点・防止策の分析結果や、個別の事故等調査の結果を分かりやすい形で紹介する「運輸安全委員会ダイジェスト」等を発行するなど、事故等の防止につながる普及啓発活動を行うとともに、データベースのコンテンツ等を充実させる。

また、自動運航船の実用化等の社会状況の変化を踏まえた調査手法の構築や調査・ 分析手法の高度化を図るとともに、運輸安全委員会の知見、情報のストックを活用 し、運航の安全性向上に貢献する。

さらに、SOLAS条約に基づき、複数の国が関連する船舶事故等の調査を確実に 実施し、必要に応じて安全勧告を行うとともに、IMO規則実施小委員会(III*)、 国際船舶事故調査官会議(MAIIF*)、アジア船舶事故調査官会議(MAIFA*)等 における事故等調査に関する検討に参加し、情報交換等を行うことにより、世界に おける海上交通の安全性向上に貢献していく。

^{**} III: Sub-committee on Implementation of IMO Instruments

^{**} MAIIF: Marine Accident Investigators' International Forum

^{**} MAIFA: Marine Accident Investigators Forum in Asia

(2) 海難事故の解析等の推進

海上技術安全研究所に設置している「海難事故解析センター」において、海難事故発生時に迅速に情報を分析して事故原因の解析を行うとともに、重大海難事故では、シミュレーターや試験水槽等を活用した事故の再現等の詳細な解析を行い、国等における再発防止対策の立案等への支援を行うことにより、海上交通における安全対策に反映させる。

10 海上交通の安全対策に係る調査研究等の充実

AIS を始めとする ICT を活用した航行安全システムについては、船舶交通の安全を担う中核システムとして発展していくことが期待されており、IMO、関係機関において、今後の戦略が議論されている。

中でも、現在の AIS と比較し、航行支援に係るデータ通信量が飛躍的に増大する「VHF データ交換システム(VDES*)」については、次世代 AIS と位置づけられ、国際標準の策定作業が行われているところであり、これを推進・主導している我が国においては、引き続き、国際標準化に貢献し、我が国への導入可能性の検討を行う。

海上技術安全研究所において、自動運航船やゼロエミッション船を始めとする次世 代船舶等の安全性評価・リスク解析手法、自動操船・操船支援技術の高度化及び船体 構造評価技術に関する研究開発を推進する。また、海難事故の高度な再現技術や海難 事故の適切な評価手法、再発防止技術に関する研究開発を推進する。

^{*} VDES: VHF Data Exchange System