第2章 道路交通安全施策の現況

第1節 道路交通環境の整備

1 道路及び交通安全施設等の現況

(1)道路の現況

我が国の道路は、令和4年3月末現在で実延長 123万388キロメートルである。国土交通省では、 安全で円滑な道路交通環境を確保するため、高規 格幹線道路を始めとする道路ネットワークの体系 的な整備を進めており、道路種別ごとの現況は、 以下のとおりである。

ア 高規格幹線道路

高規格幹線道路は、全国的な自動車交通網を形成する自動車専用道路網のうち、道路審議会答申(昭62)に基づき建設大臣が定めたもので、高速自動車国道、本州四国連絡道路、一般国道の自動車専用道路により構成される。

イ 地域高規格道路

地域高規格道路は、全国的な高規格幹線道路と 一体となって規格の高い幹線道路網を形成するも のである。

ウ 都市高速道路

都市高速道路は、大都市圏における円滑な道路 交通を確保するために建設されているものであ り、地域高規格道路の一部を構成するものであ る。

エ その他の一般道路

一般国道,主要地方道及び一般都道府県道として分類される道路の実延長は,令和4年3月末現在18万6,025キロメートルとなっている。

これに市町村道を加えると122万1,220キロメートルとなり、その改良率(幅員5.5メートル以上。以下その他の記載がない限り同じ。)及び舗装率(簡易舗装を含む。以下同じ。)はそれぞれ62.8%、82.7%である。

(ア) 一般国道

一般国道の道路実延長は5万6,144キロメートル,改良率,舗装率はそれぞれ93.2%,99.5%である。

(イ) 主要地方道等

主要地方道(国土交通大臣の指定する主要な都道府県道又は市道)の道路実延長は5万7,879キロメートル、改良率、舗装率はそれぞれ80.1%、98.3%である。主要地方道以外の一般都道府県道については7万2,002キロメートルで、それぞれ64.0%、95.9%である。一般国道や主要地方道に比して、主要地方道以外の一般都道府県道の整備水準は低くとどまっている。

(ウ) 市町村道

市町村道の道路実延長は103万5,195キロメートル,改良率(幅員5.5メートル未満を含む。),舗装率は、それぞれ60.1%、80.0%であり、その整備水準は最も低くなっている。

(2)交通安全施設等の現況

交通安全施設等は、都道府県公安委員会及び道路管理者がそれぞれ整備を行っており、令和5年3月末現在の整備状況は次のとおりである。

ア 都道府県公安委員会が整備する施設

(ア) 交通管制センター

交通管制センターは、全国の主要74都市に設置されており、交通管制システムにより、車両感知器等で収集した交通量や走行速度等のデータを分析し、信号機、道路標識及び道路標示の設置・管理その他道路における交通の規制を広域にわたって総合的に行うとともに、収集・分析したデータを交通情報として広く提供し、運転者が混雑の状況や所要時間を的確に把握して安全かつ快適に運転できるようにすることにより、交通の流れを分散させ、交通渋滞や交通公害の緩和を促進している。

(イ) 信号機

信号機の設置基数は約20万7,000基であり、このうち約35%に当たる約7万3,000基が交通管制センターで直接制御されている。なお、信号機の

うち, 押ボタン式信号機は約3万1,000基であり, バリアフリー対応型信号機*は, 約4万4,000基で ある。

また、幹線道路の機能の維持向上のため、信号機のサイクル*、スプリット*、オフセット*等の設定の計画的な見直し等を推進するとともに、信号機の集中制御化、系統化、感応化、多現示化等の改良を行っている。

(ウ) 交通情報提供装置

最先端の情報通信技術(ICT)等を用いて交通管理の最適化を図るため、光ビーコン*、交通情報板等の交通情報提供装置の整備を推進している。

(エ) 道路標識及び道路標示

規制標識及び指示標識の設置枚数は、約942万枚であり、そのうち約53万枚が大型標識(灯火式, 反射式又は自発光式)である。

イ 道路管理者が整備する施設

(ア) 歩道等

歩行者・自転車・自動車の異種交通を分離することにより、歩行者、自転車利用者等の安全と快適性を確保し、併せて、道路交通の円滑化に資するため、歩道等の整備を推進しており、歩道設置済道路延長は令和4年3月末現在で約18万キロメートルである。

また、安全で快適な歩行空間の拡大を図るため、歩道等の整備に際しては、高齢者や障害者等が安心して社会参加できるよう、幅が広く使いやすい歩道等の整備、既設歩道の段差の解消、勾配の改善、視覚障害者誘導用ブロックの設置等の措置を講じている。

(イ) 立体横断施設

歩行者等と車両を立体的に分離することによ

り,歩行者の安全確保とともに,自動車交通の安全かつ円滑な流れを確保するため,横断歩道橋及び地下横断歩道を整備している。

(ウ) 道路照明

夜間において、あるいはトンネル等の明るさが 急変する場所において、道路状況、交通状況を的 確に把握するための良好な視環境を確保し、道路 交通の安全、円滑を図るため、道路照明を整備し ている。

(エ) 防護柵

車両の路外,対向車線,歩道等への逸脱を防止 し,乗員及び第三者への被害を最小限にとどめる ことや,歩行者及び自転車の転落若しくはみだり な横断を抑制することを目的として防護柵を整備 している。

(オ) 道路標識

初めて訪れる観光客や外国人など,全ての道路 利用者の安全かつ円滑な移動に資するため、主要 な幹線道路の交差点及び交差点付近におけるルー ト番号等を用いた案内標識や、高齢者、身体障害 者等を含む歩行者の安全かつ円滑な移動を確保す る地図標識等を整備している。

(カ) 道路情報提供装置

道路交通情報をリアルタイム(即時)に提供する道路交通情報通信システム(VICS*)については、ビーコン(通信スポットを含む。)の整備を図った。また、異常気象時の道路状況に関する情報等(都市間のルート選択に資する情報を含む。)を迅速かつ的確に提供するため、道路情報板2万6,022基を設置・運用している。

また、カーラジオを通してドライバーに道路の 状況に関する情報を提供する路側通信システムを

※バリアフリー対応型信号機

音響により信号表示の状況を知らせる音響信号機、信号表示面に青時間までの待ち時間及び青時間の残り時間を表示する経過時間表示機能付き歩行者用灯器、歩行者・自転車と車両が通行する時間を分離して、交通事故を防止する歩車分離式信号等、高齢者、障害者等が道路を安全に横断できるよう整備している信号機。

※サイクル

信号機の灯火が青色、黄色、赤色と一巡する時間。

※スプリット

1 サイクル時間において、信号機が設置された交差点を通過する交通流のうち、同時に通行権を与えられている交通流の一群に それぞれ割り当てられる時間の割合。

※オフセット

車両がスムーズに通過できるようにするための、隣接する信号機間の青信号開始時間のずれを表したもの。

※光ビーコン

通過車両を感知して交通量等を測定するとともに、車載装置と交通管制センターとの間の情報のやり取りを媒介する路上設置型の赤外線通信装置。

*****VICS: Vehicle Information and Communication System

全国で設置・運用している。さらに、安全で円滑 な道路交通を確保するため、高速道路等に、情報 ターミナル*等を設置している。

なお,交通安全施設の老朽化等による第三者被 害の防止を図る観点から,道路管理者による道路 標識,道路照明等の総点検を実施している。

2 生活道路等における人優先の安全・安心な歩行空間の整備

地域の協力を得ながら、通学路、生活道路、市 街地の幹線道路等において、歩道を整備するなど、 「人」の視点に立った交通安全対策を推進した。

(1)生活道路における交通安全対策の推進

警察と道路管理者が緊密に連携し、最高速度30 キロメートル毎時の区域規制とハンプや狭さく等の物理的デバイスとの適切な組合せにより交通の安全の向上を図ろうとする区域を「ゾーン30プラス」(令和5年度末までに128地区を整備)として設定し、車両の速度抑制対策や通過交通の進入抑制対策、外周幹線道路の交通を円滑化するための交差点改良等を推進し、全ての人が安心して通行できる道路空間の確保を図っている。なお、対策の検討や効果検証に当たり、ETC2.0プローブ情報*等のデータの活用を図っている。

都道府県公安委員会においては、交通規制、交通管制及び交通指導取締りの融合に配意した施策を推進した。生活道路については、歩行者・自転車利用者の安全な通行を確保するため、これまでのゾーン30(令和5年度末までに4,358地区を整備。ゾーン30プラスとして整備している地区を含む。)の整備を含め、低速度規制を実施した。令和3年度末までに全国で整備したゾーン30(4,187地区)において、整備前年度の1年間と整備翌年度の1年間における死亡重傷事故発生件数を比較したところ、29.2%減少しており、そのうち対歩行者・自転車事故も26.5%減少するなど、交通事故抑止及びゾーン内における自動車の通過速度の抑制に効果があることが確認された。

また. 高輝度標識等の見やすく分かりやすい道

路標識・道路標示の整備や信号灯器のLED化, 路側帯の設置・拡幅,ゾーン規制の活用等の安全 対策や,外周幹線道路を中心として,信号機の改 良,光ビーコン・交通情報板等によるリアルタイ ムの交通情報提供等の交通円滑化対策を実施した ほか,高齢者,障害者等の移動等の円滑化の促進 に関する法律(平18法91,以下「バリアフリー 法」という。)にいう生活関連経路を構成する道 路を中心として,バリアフリー対応型信号機等の 整備を推進した。

道路管理者においては、歩道の整備等により、 安心して移動できる歩行空間ネットワークを整備 した。

また, 道路標識の高輝度化・必要に応じた大型 化・可変化・自発光化, 標示板の共架, 設置場所 の統合・改善, 道路標示の高輝度化等(以下「道 路標識の高輝度化等」という。)を行い, 見やす く分かりやすい道路標識・道路標示の整備を推進 した。

(2)通学路等における交通安全の確保

通学路における交通安全を確保するため、「通学路交通安全プログラム」等に基づく定期的な合同点検の実施やPDCAサイクルに基づいた対策の改善・充実等の継続的な取組を支援するとともに、道路交通実態に応じ、学校、教育委員会、警察、道路管理者等の関係機関が連携し、ハード・ソフトの両面から必要な対策を推進した。

また、子供が犠牲となる事故等の発生を受け、令和元年6月に決定された「未就学児等及び高齢運転者の交通安全緊急対策」に基づき、引き続き対策必要箇所のうち、対策未完了の箇所について、幼稚園、保育所、認定こども園等のほか、その所管機関や道路管理者、警察等が連携し、必要な対策を推進している。

さらに、令和3年6月に発生した下校中の小学生の交通事故を受け、「交通安全対策に関する関係閣僚会議」において、「通学路等における交通安全の確保及び飲酒運転の根絶に係る緊急対策」が決定され、通学路における合同点検を実施

[※]情報ターミナル

高速道路の休憩室内に設置され、道路交通情報、行先別経路案内等情報を提供する装置。 ※プローブ情報

カーナビゲーションシステムに蓄積された走行履歴情報。

するとともに、合同点検の結果を踏まえ、学校、教育委員会、道路管理者、警察が連携して、速度 規制や登下校時間帯に限った車両通行止め、通学 路の変更、スクールガード等による登下校時の見 守り活動の実施等によるソフト面の対策に加え、 歩道やガードレール、信号機、横断歩道等の交通 安全施設等の整備等によるハード面の対策を適切 に組み合わせるなど、地域の実情に対応した、効 果的な対策を検討し、速やかに実施している。な お、放課後児童クラブの来所・帰宅経路について も、市町村立小学校が行う合同点検を踏まえつ つ、安全点検を実施している。

小学校,幼稚園,保育所,認定こども園や児童 館等に通う児童・幼児,中学校,高校に通う生徒 の通行の安全を確保するため,通学路等の歩道整 備等を積極的に推進するとともに,ハンプ・狭さ く等の設置,路肩のカラー舗装,防護柵・ライジ ングボラード等の設置,自転車道・自転車専用通 行帯・自転車の通行位置を示した道路等の整備, 押ボタン式信号機・歩行者用灯器等の整備,立体 横断施設の整備,横断歩道等の拡充等の対策を推 進した。

(3)高齢者,障害者等の安全に資する歩行空間等の整備

ア 高齢者,障害者等の自立した日常生活及び 社会生活を確保するため,駅,官公庁施設,病院 等を結ぶ道路や駅前広場等において,高齢者・障 害者を始めとする誰もが安心して通行できるよう,幅の広い歩道の整備や歩道の段差・傾斜・勾 配の改善,無電柱化等の整備を推進した。

このほか、音響信号機や歩車分離式信号、歩行者等支援情報通信システム(PICS[※])等のバリアフリー対応型信号機、エスコートゾーン、昇降装置付立体横断施設、歩行者用休憩施設、自転車駐車場、障害者用の駐車マス等を有する自動車駐車場等の整備を推進した。あわせて、高齢者、障害者等の通行の安全と円滑を図るとともに、高齢運転者の増加に対応するため、信号灯器のLED化、道路標識の高輝度化等を推進した。

また、駅前等の交通結節点において、エレベーター等の設置、スロープ化や建築物との直結化が

図られた立体横断施設,交通広場等の整備,視覚 障害者誘導用ブロックの設置等を推進し,安全で 快適な歩行空間の確保を図った。

特に,バリアフリー法に基づく重点整備地区に 定められた駅の周辺地区等においては,公共交通 機関等のバリアフリー化と連携しつつ,誰もが歩 きやすい幅の広い歩道,道路横断時の安全を確保 する機能を付加したバリアフリー対応型信号機等 の整備を連続的・面的に整備しネットワーク化を 図った。

さらに、視覚障害者誘導用ブロック、歩行者用の案内標識、バリアフリーマップ等により、公共施設の位置や施設までの経路等を適切に案内した。

イ 横断歩道,バス停留所付近の違法駐車等の 悪質性・危険性・迷惑性の高い駐車違反に対する 取締りを推進するとともに,高齢者,障害者等の 円滑な移動を阻害する要因となっている歩道や視 覚障害者誘導用ブロック上等の自動二輪車等の違 法駐車についても,放置自転車等の撤去を行う市 町村と連携を図りつつ適切な取締りを推進した。

3 高速道路の更なる活用促進による生活道路と の機能分化

高規格幹線道路から生活道路に至る道路ネットワークを体系的に整備し、道路の適切な機能分化を推進した。

特に,高規格幹線道路等,事故率の低い道路利用を促進するとともに,生活道路においては,車両速度の抑制や通過交通の進入抑制を図り,歩行者,自転車中心の道路交通を形成した。

4 幹線道路における交通安全対策の推進

(1)事故ゼロプラン(事故危険区間重点解消作戦)の 推進

交通安全に資する道路整備事業の実施に当たって,効果を科学的に検証しつつ,マネジメントサイクルを適用することにより,効率的・効果的な実施に努め,少ない予算で最大の効果を得られるよう,幹線道路において,「選択と集中」,「市民参加・市民との協働」により重点的・集中的に交通事故の撲滅を図る『事故ゼロプラン(事故危険

区間重点解消作戦)』を推進した。

(2)事故危険箇所対策の推進

事故の発生割合の高い幹線道路の区間や, ETC2.0プローブ情報等のデータ活用により明らかになった潜在的な危険区間等,「事故危険箇所」として指定している2,748か所について,都道府県公安委員会及び道路管理者が連携して,信号機の新設・改良,歩車分離式信号の整備,道路標識の高輝度化等を推進するとともに,歩道等の整備,隅切り等の交差点改良,視距の改良,付加車線等の整備,中央帯の設置,バス路線等における停車帯の設置及び防護柵,区画線等の整備,道路照明・視線誘導標等を設置するなど集中的な交通事故対策を推進している。

(3)幹線道路における交通規制

幹線道路については,交通の安全と円滑化を図るため,道路の構造,交通安全施設等の整備状況,交通実態等を勘案しつつ,速度規制,追越しのための右側部分はみ出し通行禁止規制等について見直しを行い,その適正化を図った。

(4)重大事故の再発防止

交通死亡事故等の重大事故が発生した場合に,同一場所における交通事故の再発防止対策を講ずるため実施している現場点検,現地検討会等(一次点検)に加えて,一次点検の結果等を警察本部及び警察署等で共有することにより,同様に道路交通環境の改善を図るべき危険箇所を発見し,当該危険箇所においても同様の交通事故の再発を防止するために必要と認められる措置を講ずる二次点検プロセスを推進した。

(5)適切に機能分担された道路網の整備

ア 自動車, 自転車, 歩行者の異種交通を分離 し, 交通流の純化を促進するため, 高規格幹線道 路から生活道路に至るネットワークを体系的に整 備するとともに, 歩道や自転車通行空間の整備を 推進した。

イ 一般道路に比較して死傷事故率が低く安全 性の高い高規格幹線道路等の整備やインターチェ ンジの増設等による利用しやすい環境を整備し、 より多くの交通量を分担させることによって道路 ネットワーク全体の安全性を向上させた。

ウ 通過交通の排除と交通の効果的な分散により、都市部における道路の著しい混雑、交通事故の多発等の防止を図るため、バイパス及び環状道路等の整備を推進した。

エ 幹線道路で囲まれた居住地域内や歩行者等 の通行の多い商業地域内等においては,通過交通 をできる限り幹線道路に転換させるなど道路機能 の分化により,生活環境を向上させるため,補助 的な幹線道路,区画道路,歩行者専用道路等の系 統的な整備等を実施した。

オ 国民のニーズに応じた効率的な輸送体系を確立し、道路混雑の解消等円滑な交通流が確保された良好な交通環境を形成するため、鉄道駅等の交通結節点、空港、港湾の交通拠点への交通モード間の接続(モーダルコネクト)の強化を実施した。

(6) 高速自動車国道等における事故防止対策の推進

高速自動車国道等においては、緊急に対処すべき交通安全対策を総合的に実施する観点から、交通安全施設等の整備を計画的に進めるとともに、 渋滞区間における道路の拡幅等の改築事業、適切な道路の維持管理、道路交通情報の提供等を積極的に推進し、安全水準の維持、向上を図った。

ア 事故削減に向けた総合的施策の集中的実施 安全で円滑な自動車交通を確保するため、事故 の多い地点等、対策を実施すべき箇所について事 故の特徴や要因を分析し、箇所ごとの事故発生状 況に対応した交通安全施設等の整備を実施した。

中央分離帯の突破による重大事故のおそれがある箇所について中央分離帯強化型防護柵の設置の推進を図るとともに、雨天時の事故を防止するための高機能舗装、夜間の事故を防止するための高視認性区画線の整備等の各種交通安全施設の整備を実施した。また、道路構造上往復の方向に分離されていない非分離区間については、対向車線へのはみ出しによる重大事故を防止するため、四車線化等に伴う中央分離帯の設置等分離対策の強化に加え、正面衝突事故防止対策として、土工部及び中小橋はワイヤロープの設置を概成、長大橋及びトンネル区間は令和3年度から新技術を実道へ試行設置するほか、高視認性ポストコーン、高視認性区画線の設置による簡易分離施設の視認性向

上や凹凸型路面標示の設置などの交通安全対策を 実施した。また、高速道路での逆走事故対策については、令和11年までに逆走による重大事故ゼロを目指し、対策を実施した。このほか、車両故障や交通事故により停車中の車両から降車し、又は車内に留まった運転者等が後続の通行車両等に衝突される死亡事故が発生していることから、利用者に対して車両故障や交通事故等の緊急の場合、ガードレールの外側等の安全な場所に避難するなどの措置等について周知するための広報啓発活動を推進した。

さらに,事故発生後の滞留車両の排除や,救助・救急活動を支援する緊急開口部としての転回路の整備等も併せて実施した。

イ 安全で快適な交通環境の整備

過労運転やイライラ運転を防止し、安全で快適な自動車走行に資するより良い走行環境の確保を図るため、本線拡幅、事故や故障による停車車両の早期撤去、上り坂での速度低下に対する注意喚起などの情報提供等による渋滞対策、休憩施設の混雑緩和等を推進した。

ウ 高度情報技術を活用したシステムの構築 道路利用者の多様なニーズに応え、道路利用者 へ適切な道路交通情報等を提供するVICS等の整 備・拡充を図るなど、高度道路交通システム (ITS*) の整備を推進した。

(7)道路の改築等による交通事故対策の推進

交通事故の多発等を防止し、安全かつ円滑・快 適な交通を確保するため、道路の改築等による交 通事故対策を推進した。

ア 歩行者及び自転車利用者の安全と生活環境 の改善を図るため、歩道等を設置するための既存 道路の拡幅、幹線道路の整備と併せた生活道路に おけるハンプや狭さくの設置等によるエリア内へ の通過車両の抑制対策、自転車の通行を歩行者や 車両と分離するための自転車通行空間の整備等の 道路交通の安全に寄与する道路の改築事業を推進 した。

イ 交差点及びその付近における交通事故の防

止と交通渋滞の解消を図るため、交差点のコンパクト化、立体交差化等を推進した。また、進入速度の低下等による交通事故の防止や被害の軽減、信号機が不要になることによる待ち時間の減少等の効果が見込まれる環状交差点について、周辺の土地利用状況等を勘案し、適切な箇所への導入を推進した。

ウ 道路の機能と沿道の土地利用を含めた道路 の利用実態との調和を図ることが交通の安全の確 保に資することから,交通流の実態を踏まえつつ, 沿道からのアクセスを考慮した副道等の整備,植 樹帯の設置,路上駐停車対策等を推進した。

エ 商業系地区等における歩行者及び自転車利 用者の安全で快適な通行空間を確保するため、これらの者の交通量や通行の状況に即して、幅の広い歩道、自転車通行空間等の整備を推進した。

オ 交通混雑が著しい都心地区, 鉄道駅周辺地 区等において, 人と車の交通を体系的に分離する とともに, 歩行者空間の拡大を図るため, 地区周 辺の幹線道路, ペデストリアンデッキ*, 交通広 場等の総合的な整備を推進した。

カ 歴史的街並みや史跡等卓越した歴史的環境 の残る地区において、自動車交通の迂回を主目的 とする幹線道路、地区に集中する観光交通等と歩 行者等を分離する歩行者系道路の体系的な整備を 推進することにより、歩行者・自転車利用者の安 全・快適性の確保を図った。

(8)交通安全施設等の高度化

ア 交通実態に応じて、複数の信号機を面的・ 線的に連動させる集中制御化・プログラム多段系 統化等の信号制御の改良を推進するとともに、疑 似点灯防止による視認性の向上に資する信号灯器 のLED化を推進した。

イ 道路の構造,交通の状況等に応じた交通の 安全を確保するために,道路標識の高輝度化等, 高機能舗装,高視認性区画線の整備等を推進した ほか,交通事故発生地点を容易に把握し,速やか な事故処理及び的確な事故調査が行えるようにす るとともに,自動車の位置や目的地までの距離を

XITS: Intelligent Transport Systems

[※]ペデストリアンデッキ

歩行者を保護するために車道と分離し立体的に設置した歩行者道。

容易に確認できるようにするためのキロポスト (地点標)の整備を推進した。

5 交通安全施設等の整備事業の推進

社会資本整備重点計画に即して,都道府県公安 委員会及び道路管理者が連携し,交通事故実態の 調査・分析を行いつつ,重点的,効果的かつ効率 的に歩道や信号機の整備を始めとした交通安全施 設等整備事業を推進することにより,道路交通環 境を改善し,交通事故の防止と交通の円滑化を 図った。

なお、事業の実施に当たっては、事故データの 客観的な分析による事故原因の検証に基づき、効 果的な交通事故対策の実施に努めた。

(1)交通安全施設等の戦略的維持管理

都道府県公安委員会では、整備後長期間が経過した信号機等の老朽化対策が課題となっていることから、平成25年に「インフラ老朽化対策の推進に関する関係省庁連絡会議」において策定された「インフラ長寿命化基本計画」等に即して、中長期的な視点に立った老朽施設の更新、施設の長寿命化、ライフサイクルコストの削減等を推進した。

また、横断歩行者優先の前提となる横断歩道の 道路標識・道路標示が破損、滅失、褪色、摩耗等 によりその効用が損なわれないよう効率的かつ適 正な維持管理を行った。

(2)歩行者・自転車対策及び生活道路対策の推進

生活道路において人優先の考えに基づき,「ゾーン30プラス」等の車両速度の抑制,通過交通の抑制・排除等の面的かつ総合的な交通事故対策を推進するとともに、少子高齢社会の進展を踏まえ、歩行空間のユニバーサルデザイン化及び通学路における安全・安心な歩行空間の確保を図るとともに、自転車通行空間の整備、無電柱化の推進、安全上課題のある踏切の対策等による歩行者・自転車の安全な通行空間の確保を図った。

(3)幹線道路対策の推進

幹線道路では交通事故が特定の区間に集中して 発生していることから、事故危険箇所等の事故の 発生割合の大きい区間において重点的な交通事故 対策を実施した。この際、事故データの客観的な 分析による事故原因の検証に基づき、信号機の改 良、交差点改良等の対策を実施した。

(4)交通円滑化対策の推進

交通安全に資するため、信号機の改良、交差点の立体化、開かずの踏切の解消等を推進したほか、 駐車対策を実施することにより、交通容量の拡大 を図り、交通の円滑化を推進するとともに、自動 車からの二酸化炭素排出の抑制を推進した。

(5)ITSの推進による安全で快適な道路交通環境の 実現

交通情報の収集・分析・提供や交通状況に即応 した信号制御その他道路における交通の規制を広 域的かつ総合的に行うため、交通管制システムの 充実・改良を図った。

具体的には、複数の信号機を面的・線的に連動させる集中制御化・プログラム多段系統化等の信号制御の改良を図った。また、最先端の情報通信技術(ICT)等を用いて、高度化光ビーコン*の整備拡充、プローブ情報を活用した信号制御の高度化、信号情報活用運転支援システム(TSPS*)などの新交通管理システム(UTMS*)の推進やETC 2.0 サービスの展開を図った。また、災害時に交通情報を提供するためのシステムを活用し、民間事業者が保有するプローブ情報を警察が保有する交通情報と融合して提供するなど、情報収集・提供環境の拡充等により、道路交通情報提供の充実等を推進し、安全で快適な道路環境の実現を図った。

(6)道路交通環境整備への住民参加の促進

道路交通環境の整備に当たっては, 道路を利用する人の視点を生かすことが重要であることから, 地域住民や道路利用者の主体的な参加の下に

[※]高度化光ビーコン

プローブ情報の収集及び信号情報の提供の機能が付加された光ビーコン。

^{}**TSPS: Traffic Signal Prediction Systems

^{}UTMS**: Universal Traffic Management Systems

交通安全施設等の点検を行う交通安全総点検を積極的に推進するとともに、道路利用者等が日常感じている意見を受け付ける「標識BOX*」,「信号機BOX*」等を活用することにより、交通安全施設等の適切な維持管理等を推進した。また、交通の安全は、住民の安全意識により支えられることから、安全で良好なコミュニティの形成を図るために、交通安全対策に関して住民が計画段階から実施全般にわたり積極的に参加できるような仕組みを作り、行政と市民の連携による交通安全対策を推進した。

さらに、安全な道路交通環境の整備に係る住民 の理解と協力を得るため、事業の進捗状況、効果 等について積極的な広報を推進した。

(7)連絡会議等の活用

都道府県警察と道路管理者が設置している「都 道府県道路交通環境安全推進連絡会議」やその下 に設置されている「アドバイザー会議」を活用し、 学識経験者のアドバイスを受けつつ施策の企画、 評価、進行管理等に関して協議を行い、的確かつ 着実に安全な道路交通環境の実現を図った。

さらに,「都道府県道路交通環境安全推進連絡会議」は,各市町村からの要請に応じ,ETC2.0で収集したビッグデータを活用して,対策区域における自動車の速度に関する情報や抜け道利用に関する情報,急挙動情報等を提供するなどの技術的支援を行った。

6 高齢者等の移動手段の確保・充実

(1)地域公共交通計画の作成

高齢者の運転免許の返納の増加等も背景に、令和5年10月に施行された改正地域交通法(令5法18)に基づき、高齢者を含む地域住民の移動手段の確保に向け、地域の関係者の連携・協働(共創)を促進するとともに、地方公共団体が中心となった、地域公共交通のマスタープラン(地域公共交通計画)の作成を推進することにより、利便性・生産性・持続可能性の高い地域公共交通への「リ・デザイン」(再構築)を推進した。

(2)MaaSの推進

MaaS (マース: Mobility as a Service) はスマホアプリ又はウェブサービスにより、地域住民や旅行者一人一人のトリップ単位での移動ニーズに対応して、複数の公共交通やそれ以外の移動サービスを最適に組み合わせて検索・予約・決済等を一括で行うサービスであり、新たな移動手段(AIオンデマンド交通、シェアサイクル等)や関連サービス(医療・福祉等)も組み合わせることが可能なサービスである。

MaaSは既存の公共交通の利便性の向上や、地域における移動手段の確保・充実に資するものであり、その普及により、高齢者等が自らの運転だけに頼らず、ストレスなく快適に移動できる環境が整備されることが期待できる。

このような状況を踏まえ、新たなモビリティサービスの社会実装を通じた移動課題の解決及び地域の活性化に挑戦する地域や企業を応援する「スマートモビリティチャレンジ」を推進している。令和元年度には28、令和2年度には50、令和3年度には26、令和4年度には17、令和5年度には14の先駆的な取組に支援を行い、MaaSを始めとする新たなモビリティサービスの早期の全国普及を図っているところである。

今後もこのような取組を進めることで、高齢者 等が公共交通を利用してストレスなく快適に移動 できる環境を整備し、自らの運転だけに頼らずに 暮らせる社会の実現に努めていく。

(3)自動運転サービスの社会実装

政府では、令和7年度目途に50か所程度、令和9年度までに100か所以上の地域での自動運転移動サービスの実現を目標に掲げ、取組を進めている。

こうした, 高齢者等の事故防止や移動手段の確保などに資する地域の自動運転サービスの社会実装に向けて, 国土交通省及び経済産業省において「自動運転レベル4等先進モビリティサービス研究開発・社会実装プロジェクト」を実施しており, 令和5年5月には, 福井県永平寺町において国内

[※]標識 BOX

はがき、インターネット等により、運転者等から道路標識等に関する意見を受け付けるもの。 ※信号機 BOX

はがき、インターネット等により、運転者等から信号機に関する意見を受け付けるもの。

で初めてレベル4での無人自動運転移動サービスを実現した。

また、自動運転の社会実装に向けた取組を行う 地方公共団体に対して、地域公共交通確保維持改 善事業(自動運転事業関係)により62件の支援や、 交差点等の情報を提供する路車協調システムの実 証実験を実施するなど、自動運転の普及・拡大に 向けた取組を進めている。

7 歩行空間のユニバーサルデザイン化

高齢者や障害者等を含めて全ての人が安全に、安心して参加し活動できる社会を実現するため、駅、公共施設、福祉施設、病院等を結ぶ歩行空間の連続的・面的なユニバーサルデザイン化を推進した。

8 無電柱化の推進

災害の防止,安全かつ円滑な交通の確保,良好な景観の形成等の観点から,「無電柱化推進計画」に基づき無電柱化を推進した。

9 効果的な交通規制の推進

地域の交通実態等を踏まえ,交通規制や交通管制の内容について常に点検・見直しを図るとともに,交通事情の変化を的確に把握してソフト・ハード両面での総合的な対策を実施することにより,安全で円滑な交通流の維持を図った。

速度規制については、最高速度規制が交通実態に合った合理的なものとなっているかどうかの観点から、点検・見直しを進めることに加え、一般道路においては、実勢速度、交通事故発生状況等を勘案しつつ、規制速度の引上げ、規制理由の周知措置等を計画的に推進している。

高規格の高速道路については、有識者からなる調査研究委員会の提言を踏まえ、平成29年から新東名高速道路及び東北自動車道において100キロメートル毎時を超える最高速度規制の試行を段階的に実施して交通事故実態等を分析し、令和2年8月、100キロメートル毎時を超える最高速度規制の実施基準を新たに設けた。

同基準に基づき,東北自動車道,新東名高速道路及び東関東自動車道において,最高速度を120キロメートル毎時とする規制を実施しているほか,常磐自動車道において,最高速度を110キロ

メートル毎時とする規制を実施している。

駐車規制については、必要やむを得ない駐車需要への対応が十分でない場所を中心に、地域住民等の意見要望を十分に踏まえた上で、道路環境、交通量、駐車需要等に即応したきめ細かな駐車規制の見直しを推進した。

信号制御については、歩行者・自転車の視点で、 信号をより守りやすくするために、横断実態等を 踏まえ、歩行者の待ち時間の長い押ボタン式信号 の改善を行うなど、信号表示の調整等の運用の改 善を推進した。

さらに、都道府県公安委員会が行う交通規制の 情報についてデータベース化を推進し、効果的な 交通規制を行った。

10 自転車利用環境の総合的整備

(1)安全で快適な自転車利用環境の整備

クリーンかつエネルギー効率の高い持続可能な 都市内交通体系の実現に向け、自転車の役割と位 置付けを明確にしつつ、交通状況に応じて、歩行 者・自転車・自動車の適切な分離を図り、歩行者 と自転車の事故等への対策を講じるなど、安全で 快適な自転車利用環境を創出する必要がある。こ のことから、第2次自転車活用推進計画(令和3 年5月閣議決定)に基づき、「安全で快適な自転 車利用環境創出ガイドライン」の周知を図るとと もに技術的助言等を実施し、本ガイドラインに基 づく自転車ネットワーク計画の策定や歩行者と自 転車が分離された車道通行を基本とする自転車通 行空間の整備等により、安全で快適な自転車利用 環境の創出に関する取組を推進した。

また、自転車通行の安全性を向上させるため、 自転車専用通行帯の設置区間や自転車と自動車を 混在させる区間では、周辺の交通実態等を踏まえ、 必要に応じて、駐車禁止又は駐停車禁止の規制を 実施した。あわせて、自転車専用通行帯をふさぐ など悪質性・危険性・迷惑性の高い違法駐停車車 両については、取締りを適切に実施した。

さらに、各地域において道路管理者や都道府県 警察が自転車ネットワークの作成や道路空間の整備、通行ルールの徹底を進められるよう「安全で 快適な自転車利用環境創出ガイドライン」の周知 を図り、さらに、自転車を共同で利用するシェア サイクルなどの自転車利用促進策や、ルール・マ 第1編:陸上交通 第1部:道路交通

ナーの啓発活動などのソフト施策を積極的に推進 した。

(2)自転車等の駐車対策の推進

自転車等の駐車対策については、その総合的かつ計画的な推進を図ることを目的として、自転車の安全利用の促進及び自転車等の駐車対策の総合的推進に関する法律(昭55法87)による施策を総合的に推進しており、自転車等駐車対策協議会の設置、総合計画の策定を促進するとともに、自転車等の駐車需要の多い地域及び今後駐車需要が著しく多くなることが予想される地域を中心に、社会資本整備総合交付金等による自転車等の駐車場整備事業を推進した。また、大量の自転車等の駐車需要を生じさせる施設について自転車等駐車場の設置を義務付ける附置義務条例の制定の促進を図っている。

鉄道の駅周辺等における放置自転車等の問題の解決を図るため、自転車等駐車対策協議会の積極的な運営と総合計画の策定の促進を図ること等を通じて、地方公共団体、道路管理者、都道府県警察、鉄道事業者等が適切な協力関係を保持した。また、「自転車等駐車場の整備のあり方に関するガイドライン」に基づき、自転車利用者のニーズに応じた自転車等駐車場の整備を推進した。

特に、バリアフリー法に基づき、市町村が定める重点整備地区内における生活関連経路を構成する道路においては、高齢者、障害者等の移動等の円滑化に資するため、関係機関・団体が連携した広報啓発活動等の違法駐車を防止する取組及び自転車等駐車場の整備を重点的に推進した。

11 ITSの活用

道路交通の安全性,輸送効率及び快適性の向上や,渋滞の軽減等,環境保全にも寄与する交通の円滑化の実現を目的に,最先端の情報通信技術(ICT)等を用いて人と道路と車両とを一体のシステムとして構築する新しい道路交通システムである「高度道路交通システム」(ITS)の開発及

び普及を引き続き推進している。そのため、令和5年6月に閣議決定された「デジタル社会の実現に向けた重点計画」に基づき、産・学・官が連携を図りながら、研究開発やフィールドテスト*等を進めるとともに、インフラの整備や普及及び標準化に関する検討等についても一層の推進を図り、ITS世界会議等の国際的な会合において、インフラ協調型の自動運転の実現に資する技術的な成果の発表及び今後の取組の共有や、国内外の関係者との国際情報交換や国際標準化等の国際協力を積極的に進めた。

(1)道路交通情報通信システムの整備

安全で円滑な道路交通を確保するため、リアルタイムの渋滞情報や交通障害情報、交通規制情報などの道路交通情報を提供するVICSの整備・拡充を推進するとともに、対応車載器の普及を図った。

また、詳細な道路交通情報の収集・提供のため、高度化光ビーコン、ETC2.0等のインフラの整備を推進するとともに、インフラから提供される情報を補完するため、リアルタイムの自動車走行履歴情報(プローブ情報)等の広範な道路交通情報を集約・配信した。

(2)新交通管理システムの推進

最先端の情報通信技術(ICT)等を用いて交通管理の最適化を図るため、高度化光ビーコン等の機能を活用して公共車両優先システム(PTPS*)、現場急行支援システム(FAST*)を始めとする新交通管理システム(UTMS)の整備を行うことにより、ITSを推進し、安全・円滑かつ快適で環境負荷の低い交通社会の実現を図った。

(3)交通事故防止のための運転支援システムの推進

交通の安全を高めるため、自動車単体では対応 できない事故への対策として、情報通信技術 (ICT)を活用した安全運転支援システムの導入・ 整備を推進した。

具体的には、高齢者を含む運転者に信号灯火に

※フィールドテスト

実地試験、屋外試験等のこと。

%PTPS : Public Transportation Priority Systems
%FAST : Fast Emergency Vehicle Preemption Systems

関する情報等を提供することで、注意を促し、ゆとりを持った運転ができる環境を作り出すことにより、交通事故の防止を図るため、信号情報活用運転支援システム(TSPS)の整備を推進した。

産学官の連携により、先進技術を搭載した自動車の開発と普及を促進する「先進安全自動車(ASV*)推進プロジェクト」では、第7期ASV推進検討会を立ち上げ、テーマの1つとして「通信や地図を活用した協調型の安全技術の実用化と普及に向けた共通仕様の検討」に取り組み、車両間の通信により、見通しの悪い交差点での出会い頭の事故等を防止する安全技術や歩行者等の交通弱者と通信を行い、交通弱者が被害者となる事故を防止する安全技術等がより安全に寄与する事故形態の検討を行った。

電波を用いた自動運転・安全運転支援等を目的とする V2X*用通信システムについて、既存のITS用周波数帯(760MHz帯)に加えて、国際的に検討が進められている周波数帯(5.9GHz帯)の追加割当てに向けて、令和 5年2月に「自動運転時代の"次世代のITS通信"研究会」を立ち上げ、同年8月、「国際的な周波数調和や既存無線局との干渉などを勘案し、5,895~5,925MHzの最大30MHz幅を目途に V2X通信向けの割当を検討する」旨の中間取りまとめを行った。

(4)ETC2.0の展開

平成27年8月より本格的に車載器の販売が開始されたETC2.0は、令和6年3月末時点で約1,142万台が出荷されている。ETC2.0では、事故多発地点、道路上の落下物等の注意喚起等に関する情報を提供することで安全運転を支援するほか、収集した速度や利用経路、急ブレーキのデータなど、多種多様できめ細かいビッグデータを活用して、ピンポイント渋滞対策や交通事故対策、生産性の高い賢い物流管理など、道路ネットワークの機能を最大限に発揮する取組を推進した。

(5)道路運送事業に係る高度情報化の推進

公共交通機関利用者の利便性向上のため、道路 運送事業においてITS技術を活用し、バス・タク シーの利用促進に資するバスロケーションシステ ム・配車アプリの導入を推進した。

(6)ITS用無線システムの国際標準化活動

国際電気通信連合の無線通信部門(ITU-R)の 地上業務研究委員会(SG5)において、無線技術 を活用した自動運転車(CAV*)に求められる通 信要件の検討を行う研究課題261-5に基づき、 CAVのユースケースや目的・通信要件、通信技 術等を取りまとめるITU-R新報告案M.[CAV]が 議論された。我が国のITS技術がITU-R勧告等 に反映されることを目的に、世界的なITS用通信 技術の動向調査を行うとともに、ITS関係の国際 会合において意見交換等を実施するなど、積極的 に国際標準化活動を行った結果、我が国のCAV に関する検討内容等が盛り込まれたM.[CAV]が 令和5年9月のSG5会合で承認された。

また、我が国のITS用無線システムが各国で採用されるよう、周波数割当てや道路交通事情等が我が国と類似するアジア地域への普及・展開を図るべく、引き続きインドにおいてITS用無線システムの実用化実証及び同国標準規格への採用に向けた働き掛けを行った。

(フ)ITSに関する国際標準化活動

主要国におけるITSに関する技術開発や標準化動向を踏まえ、国際標準化機構(ISO)の国際会議において我が国から提案中の国際規格原案の審議を促進するとともに、新規規格原案の追加提案を行うなど、積極的に国際標準化活動を行い、令和5年度は、自動バレー駐車*に関わる国際標準の発行を行った。

%ASV : Advanced Safety Vehicle
%V2X : Vehicle to Everything

**CAV : Connected Automated Vehicle

※自動バレー駐車

大型施設の駐車場等で、ユーザーが出入口で乗降車する際以外、車両の受け渡しと駐車スペースまでの往復と駐車を、無人の自動走行により行う技術。

第1編:陸上交通 第1部:道路交通

12 交通需要マネジメントの推進

依然として厳しい道路交通渋滞を緩和し、道路 交通の円滑化を図るため、バイパス・環状道路の 整備や交差点の改良、付加車線の設置等の交通容 量の拡大策、交通管制の高度化等に加えて、パー クアンドライド*の推進、X(旧ツイッター)・イ ンターネット等情報通信ツールの活用、時差通 勤・通学、フレックスタイム(自由勤務時間)制 の導入、ITS利用の促進、路肩活用等の柔軟な車 線運用等により、多様化する道路利用者のニーズ を的確に捉え、輸送効率の向上や交通量の時間 的・空間的平準化を図る交通需要マネジメント (TDM)を推進した。

(1)公共交通機関利用の促進

令和5年10月に施行された改正地域交通法に基づき、地域の関係者の連携・協働(共創)を促進するとともに、地方公共団体が中心となった地域公共交通のマスタープラン(地域公共交通計画)の作成を推進することで、公共交通サービスの改善を進めるなど、公共交通機関利用の促進を図った。

道路交通混雑が著しい一部の道路について、バス専用・優先通行帯規制の実施、ハイグレードバス停*や公共車両優先システム(PTPS)の整備、パークアンドバスライドの導入等バスの利用促進を図った。

また,路面電車,モノレール等の公共交通機関の整備を支援するとともに,エコ通勤*等の広報・啓発活動を行うことで,鉄道,バス等の公共交通機関への転換による円滑な道路交通の実現を図った。

さらに、鉄道、バス事業者による運行頻度・運行時間の見直し、乗り継ぎ改善等によるシームレス**な公共交通の実現を図ること等により、利用

者の利便性の向上を図るとともに,鉄道駅・バス停までのアクセス(交通手段)確保のために,パークアンドライド駐車場,自転車道,駅前広場等の整備を促進し,交通結節機能を強化した。

多様な交通モードが選択可能で利用しやすい環境を創出し、人とモノの流れや地域活性化の更なる促進のため、バスタ新宿を始めとする集約型公共交通ターミナル「バスタプロジェクト」を全国で推進しており、平成31年に品川、令和2年に神戸三宮、新潟、令和3年に追浜、近鉄四日市、呉、令和5年に札幌で事業化された。

(2)貨物自動車利用の効率化

効率的な自動車利用等を促進するため、共同輸配送による貨物自動車の積載効率向上や宅配便の再配達削減の推進等による物流効率化を図った。

13 災害に備えた道路交通環境の整備

(1)災害に備えた道路の整備

地震,豪雨,豪雪,津波等の災害が発生した場合においても安全で安心な生活を支える道路交通を確保する必要があり、地震による被災時に円滑な救急・救援活動、緊急物資の輸送,復旧活動に不可欠な緊急輸送を確保するため、緊急輸送道路上の橋梁及び同道路をまたぐ跨道橋の耐震補強対策や無電柱化を実施した。

また、豪雨・豪雪時等においても、安全・安心で信頼性の高い道路ネットワークを確保するため、道路斜面等の防災対策や災害のおそれのある区間を回避・代替する道路の整備を推進するとともに、津波や洪水に対しては、浸水が想定される地域において、道路高架区間や盛土部分等を一時的な避難場所として活用するため、避難階段等を整備した。

[※]パークアンドライド

都心部へ乗り入れる自家用自動車による交通混雑を緩和するため、郊外の鉄道駅・バスターミナル等の周辺に駐車場を整備し、 自動車を駐車(パーク)させ、鉄道・バス等公共交通機関への乗換え(ライド)を促すシステム。

バス停の機能を高度化したもので、バス接近表示器(バスロケーションシステム)や上屋、ベンチ等を整備したもの。 ※エコ通勤

事業者が主体となり、従業員への働き掛け、電車・バスの情報提供、通勤制度の見直し、通勤バス導入等を行うことでマイカー通勤から公共交通への転換等を行う取組。

[※]シームレス

[「]継ぎ目のない」の意味。公共交通分野におけるシームレス化とは、乗り継ぎ等の交通機関の「継ぎ目」の交通ターミナル内の歩行や乗降に際しての「継ぎ目」をハード・ソフト両面にわたって解消することにより、出発地から目的地までの移動を全体として円滑かつ利便性の高いものとすること。

(2)災害に強い交通安全施設等の整備

地震,豪雨,豪雪,津波等の災害が発生した場合においても安全で円滑な道路交通を確保するため,交通管制センター,交通監視カメラ,車両感知器,交通情報板等の交通安全施設等の整備を推進するとともに,通行止め等の交通規制を迅速かつ効果的に実施するための道路災害の監視システムの開発・導入や交通規制資機材の整備を推進した。あわせて,災害発生時の停電による信号機の機能停止を防止する信号機電源付加装置の整備を推進した。

また、オンライン接続により都道府県警察の交通管制センターから詳細な交通情報をリアルタイムで警察庁が収集し、広域的な交通管理に活用する「広域交通管制システム」の的確な運用を推進した。

(3)災害発生時における交通規制

災害発生時における交通規制の迅速かつ的確な 実施を図るため、関係機関と緊密に連携し、緊急 交通路の確保、緊急通行車両確認標章の交付、交 通検問所の設置、信号機の滅灯対策、広域緊急救 助隊の出動運用等について、南海トラフ地震発生 時の交通規制計画や首都直下地震発生時の交通規 制計画等に基づき、総合的かつ実践的な訓練を実 施した。

(4)災害発生時における情報提供の充実

災害発生時において,道路の被災状況や道路交通状況を迅速かつ的確に収集・分析・提供し,復旧や緊急交通路,緊急輸送道路等の確保及び道路利用者等に対する道路交通情報の提供等に資するため,高度化光ビーコン,交通監視カメラ,車両感知器,交通情報板,道路交通情報提供装置,道路管理情報システム,ETC2.0路側機等の整備を推進するとともに,インターネット等を活用した道路・交通に関する災害情報等の提供を推進した。

また, 災害時に交通情報を提供するためのシステムを運用し, 令和6年能登半島地震等において, 民間事業者が保有するプローブ情報を警察が保有

する交通情報と融合して提供するとともに, 災害 通行実績データシステムによって官民ビッグデー タを活用し、相互に連携を図りつつ, 災害対応へ 活用を図った。

14 総合的な駐車対策の推進

道路交通の安全と円滑を図り、都市機能の維持 及び増進に寄与するため、道路交通の状況や地域 の特性に応じた総合的な駐車対策を推進した。

令和5年中の駐車車両への衝突事故の発生件数は,690件で,31人が死亡したほか,110番通報された要望・苦情・相談のうち,駐車問題に関するものが9.5%を占めた。

(1)きめ細かな駐車規制の推進

ア 地域住民等の意見要望等を十分に踏まえつつ、駐車規制の点検・見直しを実施するとともに、物流の必要性や自動二輪車の駐車需要等にも配慮し、地域の交通実態等に応じた規制の緩和を行うなど、きめ細かな駐車規制を推進した。

イ 違法な駐停車が交通渋滞等交通に著しい迷惑を及ぼす交差点においては、違法駐車抑止システム*を活用し、違法な駐停車を抑制して交通の安全と円滑化を図った。

ウ 都市部の交通渋滞を緩和するため、特に違 法駐車が著しい幹線道路において、きめ細かな駐 車規制の実施や違法駐車防止指導員等を配置して 指導・広報・啓発を行った。

(2)違法駐車対策の推進

取締り活動ガイドラインに沿った取締りの推進,駐車監視員による放置車両の確認等に関する事務の円滑な運用,放置違反金制度による使用者責任の追及,悪質な運転者の責任追及の徹底等により,地域の駐車秩序の確立を図った。令和5年中の放置駐車の取締り件数(放置車両確認標章取付件数)は78万829件であった。

(3)駐車場等の整備

路上における無秩序な駐車を抑制し、安全かつ 円滑な道路交通を確保するため、駐車規制及び違

[※]違法駐車抑止システム

交差点に設置されたテレビカメラ及びスピーカーを用いて、違法駐車車両を監視し、必要に応じ音声で警告することにより、違 法駐車を抑止するシステム。

第1部:道路交通

法駐車の取締りの推進と併せ, 次の施策により駐 車環境の整備及び配置適正化を推進した。

ア 駐車場整備に関する調査を推進し、自動車 交通が混雑する地区等において、駐車場整備地区 の指定を促進するとともに、当該地区において計 画的、総合的な駐車対策を行うため、駐車場整備 計画の策定を推進した。

イ 地域の駐車需要を踏まえた附置義務駐車施 設の整備を促進するとともに、民間駐車場の整備 を促進した(第1-2表)。

ウ 郊外部からの過度な自動車流入を抑制し、 都心部での交通の混雑・ふくそうを解消するた め、都市再生特別措置法(平14法22)に基づく 駐車場法(昭32法106)の特例制度による駐車場 配置適正化区域の設定等の促進や、市街地の周縁 部(フリンジ)等に駐車場を配置する等、パーク アンドライド等の普及のための環境整備を推進し たほか、まちづくり計画等を踏まえた駐車場の配 置適正化を促進した。

エ 高速道路の休憩施設における駐車マス不足 に対応するため、駐車マスの拡充や駐車場予約シ ステムを導入するとともに、「道の駅」を活用し た休憩サービスの拡充等高速道路外の休憩施設等 の活用を推進した。

第1-2表 駐車場整備状況(令和5年3月末現在)

	都市計画駐車場	届出駐車場 (注2)	附置義務駐車施設 (注3)	
箇所数	432	9,977	80,388	
台数	111,280	1,936,137	3,514,442	

- 国土交通省資料による。 1
 - 都市計画区域内において、道路の路面外に設置される一般公共の用 に供される駐車場のうち、自動車の駐車の用に供する部分の面積が 500m²以上であって、駐車料金を徴収するものをいう。ただし、都 市計画駐車場又は附置義務駐車施設に該当するものは、これらにお いて計上しているため除いている。
 - 3 地方公共団体が定める附置義務条例に基づき設置された駐車施設を いう。

⑷違法駐車を排除する気運の醸成・高揚

違法駐車の排除及び自動車の保管場所の確保等 に関し、 国民への広報・啓発活動を行うととも に、関係機関・団体との密接な連携を図り、地域 交通安全活動推進委員の積極的な活用等により. 住民の理解と協力を得ながら違法駐車締め出し気 運の醸成・高揚を図った。

(5)ハード・ソフト一体となった駐車対策の推進

必要やむを得ない駐車需要への対応が十分でな い場所を中心に、地域の駐車管理構想を見直し、 自治会、地元商店街等地域の意見要望を十分に踏 まえた駐車規制の点検・改善、道路利用者や関係 事業者等による自主的な取組の促進、地方公共団 体や道路管理者に対する路外駐車場及び共同荷さ ばきスペースや路上荷さばきスペース整備の働き 掛け、違法駐車の取締り、積極的な広報・啓発活 動等ハード・ソフト一体となった総合的な駐車対 策を推進した。

15 道路交通情報の充実

(1)情報収集・提供体制の充実

多様化する道路利用者のニーズに応えて道路利 用者に対し必要な道路交通情報を提供することに より、安全かつ円滑な道路交通を確保するため、 光ファイバーネットワーク等の情報技術を活用し つつ. 高度化光ビーコン. 交通監視カメラ. 車両感 知器, 交通情報板, 道路情報提供装置, ETC2.0等 の整備による情報収集・提供体制の充実を図ると ともに. 交通管制エリアの拡大等の交通管制シス テムの充実・高度化を図るほか、全国の交通規制 情報のデータベース化を推進した。

(2)ITSを活用した道路交通情報の高度化

ITSの一環として、運転者に渋滞状況等の道路 交通情報を提供する高度化光ビーコン, VICSや ETC2.0の整備・拡充を積極的に図るとともに、 高度化光ビーコンを活用し, 信号情報活用運転支 援システム(TSPS)の整備を進めることや、全 国の高速道路上に設置された約1,800か所の ETC2.0路側機を活用し、渋滞回避支援や安全運 転支援等の情報提供の高度化を図り、交通を分散 することにより交通渋滞を解消し、交通の安全と 円滑化に向けた取組を推進した。

(3)適正な道路交通情報提供事業の促進

予測交通情報を提供する事業者の届出制等を規 定した道路交通法及び交通情報を提供する際に事 業者が遵守すべき事項を定めた交通情報の提供に 関する指針(平14国家公安委員会告示12)に基 づく事業者への指導・監督によって交通情報提供 事業の適正化を図ること等により、民間事業者に よる正確かつ適切な道路交通情報の提供を促進し た。

(4)分かりやすい道路交通環境の確保

時間別・車種別等の交通規制の実効を図るための視認性・耐久性に優れた大型固定標識及び路側可変標識の整備並びに利用者のニーズに即した系統的で分かりやすい案内標識及び中央線変移システムの整備を推進した。

また、主要な幹線道路の交差点及び交差点付近における、ルート番号等を用いた案内標識の設置の推進等により、国際化の進展への対応に努めた。

16 交通安全に寄与する道路交通環境の整備

(1)道路の使用及び占用の適正化等

ア 道路の使用及び占用の適正化

工作物の設置,工事等のための道路の使用及び 占用の許可に当たっては,道路の構造を保全し, 安全かつ円滑な道路交通を確保するために適正な 運用を行うとともに,道路使用許可条件の遵守等 について指導した。また,占用物件の損壊による 道路構造や交通への支障を防ぐため,道路占用者 の維持管理義務を明確化し,道路占用者において 物件の維持管理が適切になされるよう取組を実施 した。

さらに、交通が著しくふくそうする道路又は幅 員が著しく狭い道路について、電柱が車両の能率 的な運行や歩行者の安全かつ円滑な通行の支障と なっているときは、道路上における電柱の占用を 禁止する取組を実施した。

イ 不法占用物件の排除等

道路交通に支障を与える不法占用物件等については、実態把握、強力な指導取締りその他の必要な措置によりその排除を行い、特に市街地について重点的にその是正を実施した。

また, 道路上から不法占用物件等を一掃するためには, 地域における道路の適正な利用についての認識を高める必要があることから, 沿道住民等に対して道路占用制度の周知を行った。

ウ 道路の掘り返しの規制等

道路の掘り返しを伴う占用工事について、工事時期の平準化及び工事に伴う事故・渋滞の防止のため、関係者間の工事調整による共同施工、年末年始及び年度末の工事抑制等の取組を実施した。

さらに、掘り返しを防止する抜本的対策として 共同溝等の整備を推進した。

(2)休憩施設等の整備の推進

過労運転に伴う事故防止や近年の高齢運転者等の増加に対応して,「道の駅」等の休憩施設等の整備を推進した。

(3)こどもの遊び場等の確保

ア 都市公園の整備

都市における児童の遊び場が不足していることにより、路上における遊びや運動による交通事故が発生することを防ぐため、街区公園、近隣公園、運動公園など、都市公園法(昭31法79)に基づき設置される都市公園の整備を促進した(第1-3表)。

イ 交通公園の整備

児童が遊びながら交通知識等を体得できるよう な各種の施設を設置した交通公園は,全国で開設 されており,一般の利用に供されている。

第1-3表 都市公園等の整備状況(令和5年3月末現在)

年 度	住区基幹公園		都市基幹公園		緑道	
十 反	箇所数	面 積	箇所数	面 積	箇所数	面 積
	箇 所	ha	箇 所	ha	箇 所	ha
令和 4 年度	99,382	35,391	2,252	39,910	1,012	930

- 注 1 国土交通省資料による。
 - 2 交通安全に関連する都市公園のみである。
 - 3 住区基幹公園とは、街区公園、近隣公園及び地区公園であり、都市基幹公園とは、総合公園及び運動公園である。

第1編:陸上交通 第1部:道路交通

ウ 児童館, 児童遊園等の整備

児童館及び児童遊園は、児童福祉法(昭22法 164)による児童厚生施設であり、児童に健全な 遊びを与えてその健康を増進し、情操を豊かにす ることを目的としているが、児童の交通事故防止 にも資するものである。令和4年10月1日現在、 児童館が4,301か所、児童遊園が2,074か所それぞ れ設置されている。児童遊園は、児童の居住する 全ての地域を対象に、その生活圏に見合った設置 が進められており、特に児童の遊び場が不足して いる場所に優先的に設置されている。

このほか、幼児等が身近に利用できる小規模な遊び場(いわゆる「ちびっ子広場」)等が地方公共団体等により設置されている。

エ 学校等の開放

こどもの安全な遊び場の確保のために,小学校, 中学校等の校庭,体育施設等の開放を促進した。

(4)道路法に基づく通行の禁止又は制限

道路の構造を保全し、又は交通の危険を防止するため、道路の破損、欠壊又は異常気象等により交通が危険であると認められる場合及び道路に関する工事のためやむを得ないと認められる場合には、道路法(昭27法180)に基づき、迅速かつ的確に通行の禁止又は制限を実施した。

また、危険物を積載する車両の水底トンネル* 等の通行の禁止又は制限及び道路との関係におい て必要とされる車両の寸法,重量等の最高限度を 超える車両の通行の禁止又は制限に対する違反を 防止するため,関係機関が連携し,違反車両の取 締りを実施した。

(5)地域に応じた安全の確保

積雪寒冷特別地域においては、冬期の安全な道路交通を確保するため、冬期積雪・凍結路面対策として都道府県単位や地方ブロック単位にこだわらない広範囲で躊躇ない予防的・計画的な通行規制や集中的な除雪作業、凍結防止剤散布の実施、交差点等における消融雪施設等の整備、流雪溝、チェーン着脱場等の整備を推進した。

また、大雪が予想される場合には道路利用者に対し、通行止め、立ち往生車両の有無、広域迂回や出控えの呼び掛けなど、道路情報板への表示やラジオ、SNS等様々な手段を活用して幅広く情報提供するとともに、滞留が発生した場合には、滞留者に対して、定期的に、除雪作業や滞留排出の進捗、通行止めの解除見通し等を情報提供した。

さらに、安全な道路交通の確保に資するため、 気象、路面状況等を収集し、道路利用者に提供す る道路情報提供装置等の整備を推進した。

また、冬期の安全で快適な歩行空間を確保する ため、中心市街地や公共施設周辺等における除雪 の充実や消融雪施設の整備等の冬期バリアフリー 対策を実施した。

[※]水底トンネル

水底にあるトンネル、その他水際にあるトンネルで当該トンネルの路面の高さが水面の高さ以下のもの又は長さ 5,000 メートル以上のトンネル。