海洋エネルギーの 現状と将来展望

高木 健

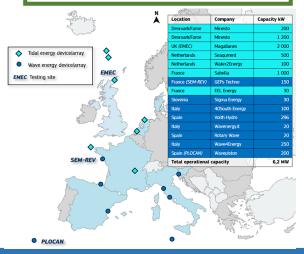
(一社)海洋エネルギ資源利用推進機構 会長 東京大学 名誉教授

2025年10月29日第10回 海洋産業プラットフォーム会合資料

欧州の海洋エネルギー

EUでは、2020年の洋上再エネ戦略で海洋エネルギーの導入目標を2030年に1GW、2050年に40GWへ拡大することを目指している。

累積設備容量


波力: **13.6 MW**

潮流: 33.7 MW

(稼働中は6.2MW)

浮体式風力: 207 MW

着床式風力: 35.1 GW

	波力	潮流	浮体式 洋上風車	着床式 洋上風車
LCOE	160-750 €/MWh	110-480 €/MWh	145-350 €/MWh	56-170 €/MWh
Est.				Established
TRL 9	Point absorber OWC	Horizontal axis turbine Tidal kite	Semi- submersible Spar-buoy	
TRL 8	OWSC Attenuator Overtopping		Barge	
TRL 7	Rotating mass Pressure differential	Enclosed tips Vertical axis turbine Undulating membrane		
TRL 6		Oscillating hydrofoil	Tension-leg platform Semi-spar	

Source: The EU Blue economy report 2025, Marine renewable energy https://op.europa.eu/webpub/mare/eu-blue-economy-report-2025/blue-economic-sectors/marine-renewable-energy.html#oceanenergy

海外の情勢

海洋エネルギーは、2050年までに100GWの発電容量となる-これは今日のヨーロッパの電力消費量の10%に相当する

Chair of the ETIP Ocean Steering Committee Senior Expert and Project Manager, ENGIE

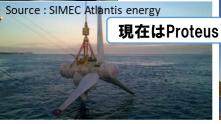
	2025	2030
Tidal stream	0.15 EUR/KWh	0.10 EUR/kWh
Wave	0.20 EUR/KWh	0.15 EUR/kWh

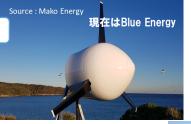
世界の様々な発電装置

第1世代

第2世代

第3世代





Source: Ocean power technologies

Source: Northwest energy innovations

我が国の海洋再生可能エネルギー (NEDO)

表 3-1-1 現状技術におけるポテンシャル算定結果

	波力	海洋温度差	海流	潮流	潮汐
海洋エネルギーポテンシャル	195, 101	904, 232	205, 143	22, 137	286
[MW]		(*)			
導入ポテンシャル	5, 386	5, 952	1,276	1,870	172
[MW]					
発電ポテンシャル	19	47	10	6	0.38
[TWh/年]					

(*) MW_{th}

表 3-1-2 将来技術におけるポテンシャル算定結果

	波力	海洋温度差	海流	潮流	潮汐
海洋エネルギーポテンシャル	195, 101	904, 232	205, 143	22, 137	286
[MW]		(*)			
導入ポテンシャル	24,874	19,767	1,276	1,870	172
[MW]					
発電ポテンシャル	87	156	10	6	0.38
[TWh/年]					

(*) MW_{th}

NEDOの技術開発支援の例

実証試験事業

2011年~2017年

次世代要素技術開発

形式	開発者
波力	三井造船
波力	三菱重工鉄鋼エンジニアリング,東亜建設
波力	ジャイロダイナミックス、日立造船
波力	市川土木、協立電機、いであ
潮流	川崎重工
風力 &潮流	MODEC

2014年7月時点

形式開発者海流東京大学、IHI、東芝、三井物産戦略研温度差神戸製鋼、佐賀大学潮流佐世保重工、東京大学、九州大学潮流中島プロペラ、五洋建設、広島工業大学海流三菱重工潮流アイム電機工業、協和コンサルタンツ、九州工業大学、前田建設工業、早稲田大学

実証試験事業

形式	開発者
波力	三井造船, (委託先:東京大学、五洋建設)
海流	IHI, (委託先:東京大学、三井物産戦略研)
温度差	ジャパンマリンユナイッテッド,佐賀大学

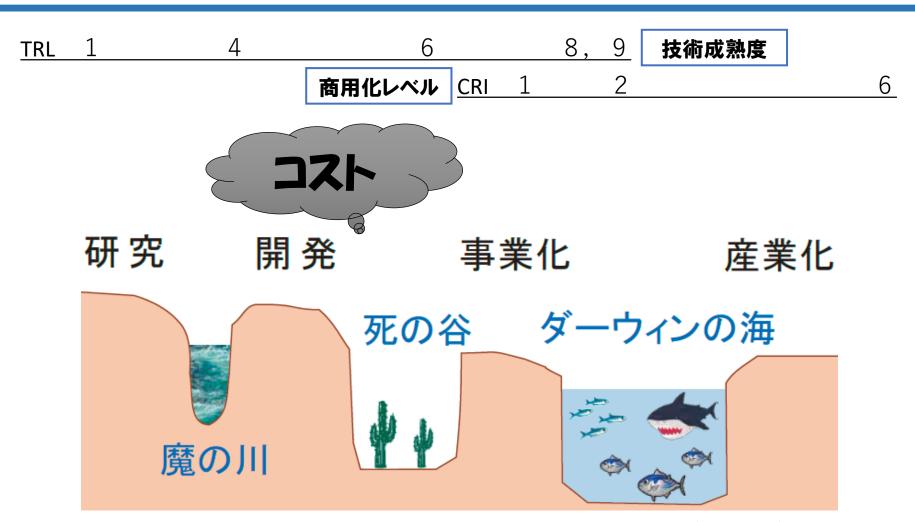
2016年4月時点

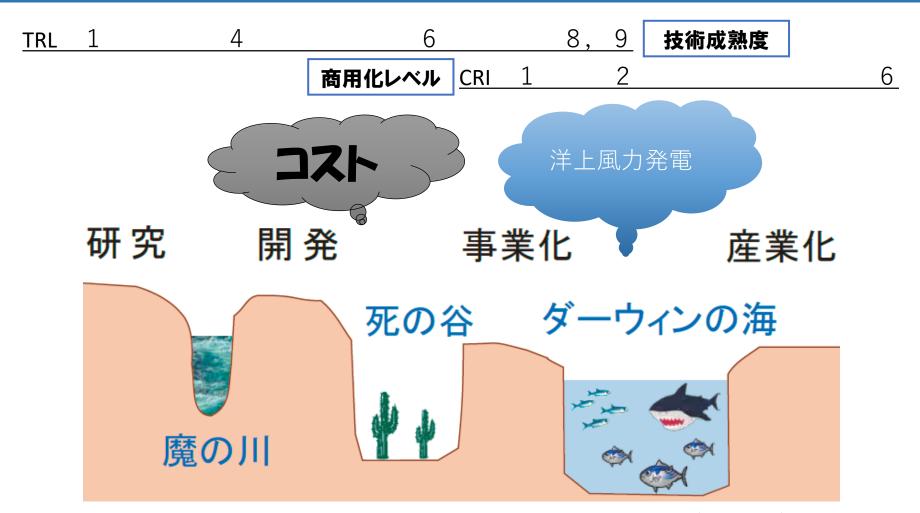
2018年~2021年

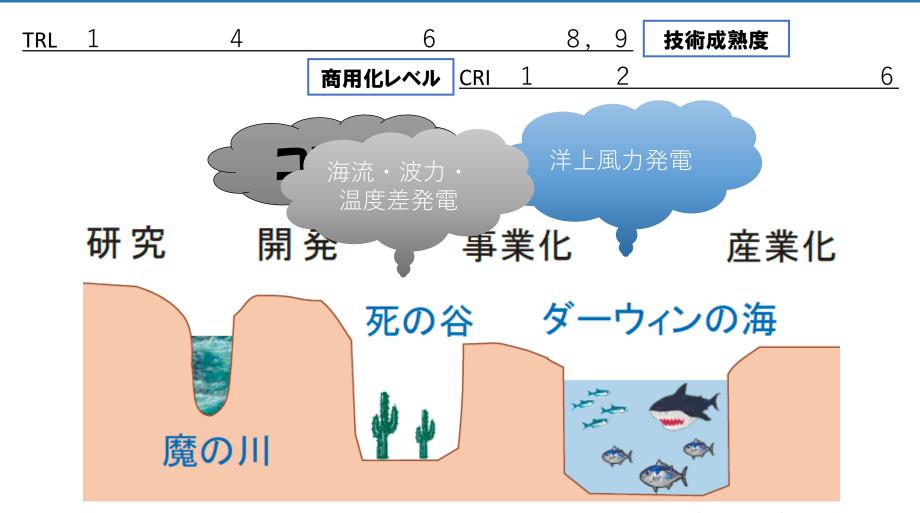
海洋エネルギー発電実証等研究開発事業

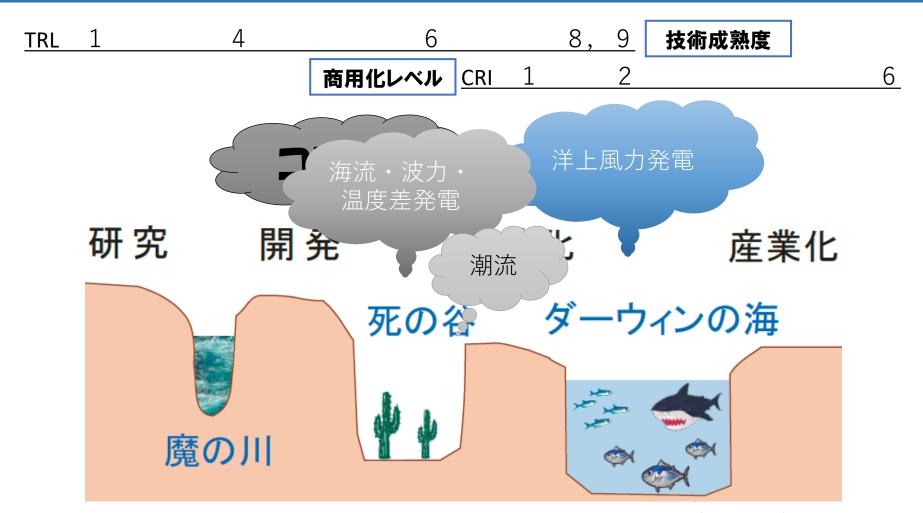
海流発電 IHI, (委託先:東京大学、鹿児島大学)

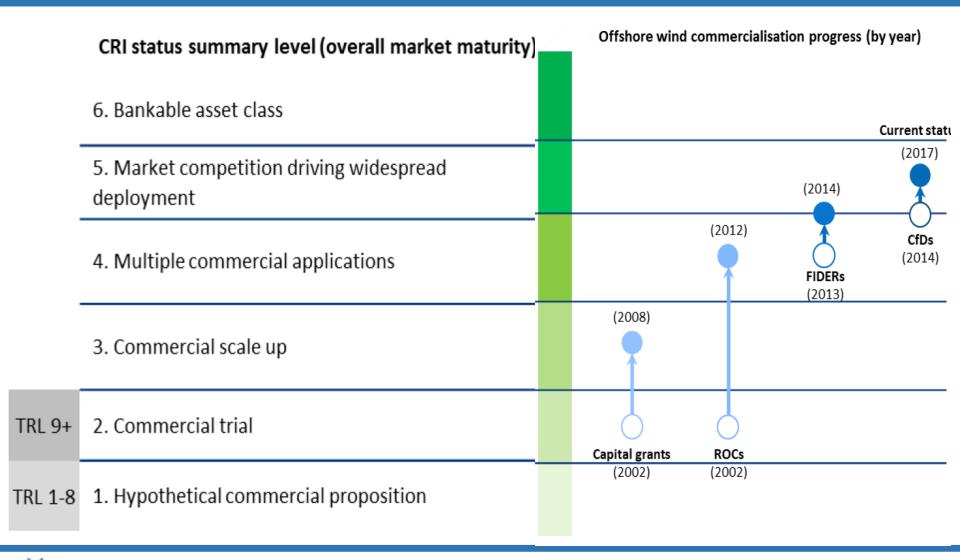
次世代要素技術開発


形式	開発者
海流	三菱重工
潮流	アイム電機工業, 協和コンサルタンツ, 九 州工業大学, 前田建設工業, 早稲田大学
潮流	中国電力, 広島工業大学
波力	釜石・大槌地域産業育成センター, 東京大学, 東北大学, 横浜国立大学, 海上技術安全研究所


国内実証試験の例







ご清聴ありがとうございました。

