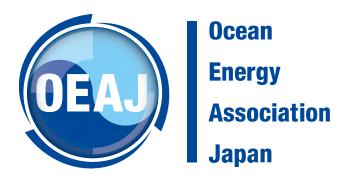
海流・潮流・潮汐発電の動向


~ 国内外の技術開発動向と課題および事業の方向性 ~

海洋産業プラットフォーム会合(第10回)

日 時:2025年10月29日(水)14:00~17:00

場 所:鉄鋼会館 8F会議室 + Teams会議(ハイブリッド開催)

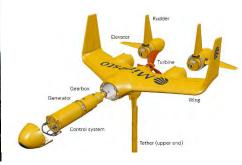
一般社団法人海洋エネルギー資源利用推進機構海流・潮流・潮汐分科会 会長 石垣衛(広島工業大学)

海流・潮流・潮汐発電とは・・・?

潮流発電技術の変遷

第1世代(着床式)

MCT SeaGen Tidal Turbine (MCT HPより引用)

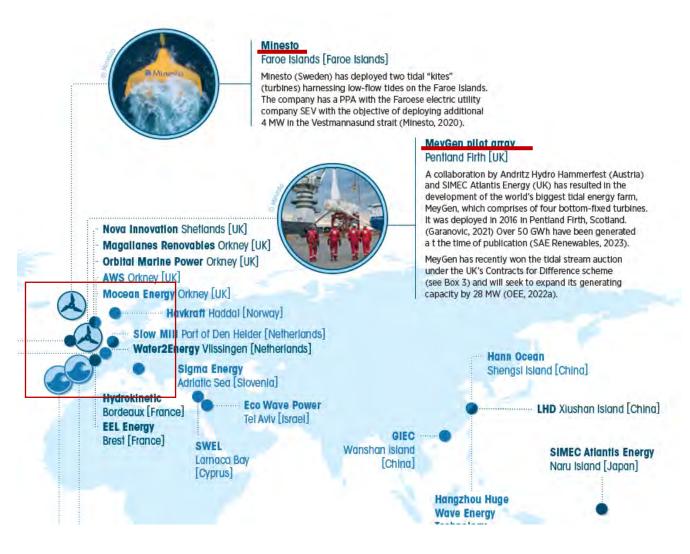

第2世代(着底式)

ANDRITZ HYDRO Hammerfest (ANDRITZ HPより引用)

第4世代(自走式)

Minesto kites

第3世代(浮体式)



ORBITAL MARINE POWER 02-X (ORBITAL MARINE POWER HPより引用)

(Minesto HPより引用)

世界の海流・潮流・潮汐発電の現況

世界の潮流エネルギー導入事例とパイロット事業

インドネシアにおける海洋エネルギー利用

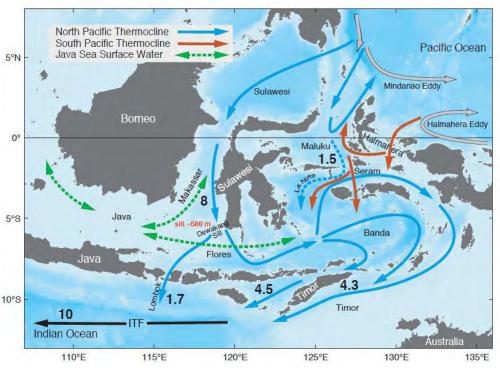


表 2 海洋エネルギーの発電ポテンシャリティー

	理論値 (GW)	技術的可能値 (GW)	実現予測 (GW)
潮汐・潮流	160. 0	22. 5	4.8
波力	510.0	2.0	1. 2
温度差(OTEC)	57. 0	52.0 *	43.0
計	727. 0	76. 5	49. 0

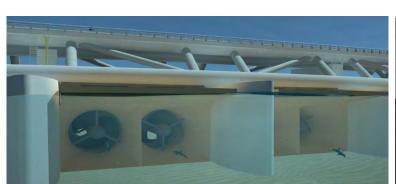
実現予測値参考: 水力 75GW, 地熱 29GW, バイオマス 50GW, PV 4.6kWh/m2/day

(エネルギー鉱物資源省 2015-2019 戦略)

海洋エネルギー資源利用推進機構 海流・潮流・潮汐分科会報告(2025年)

Tidal Power Plant Larantsuka

TIDAL BRIDGE社 (オランダ) とインドネシア PLNがMOU締結

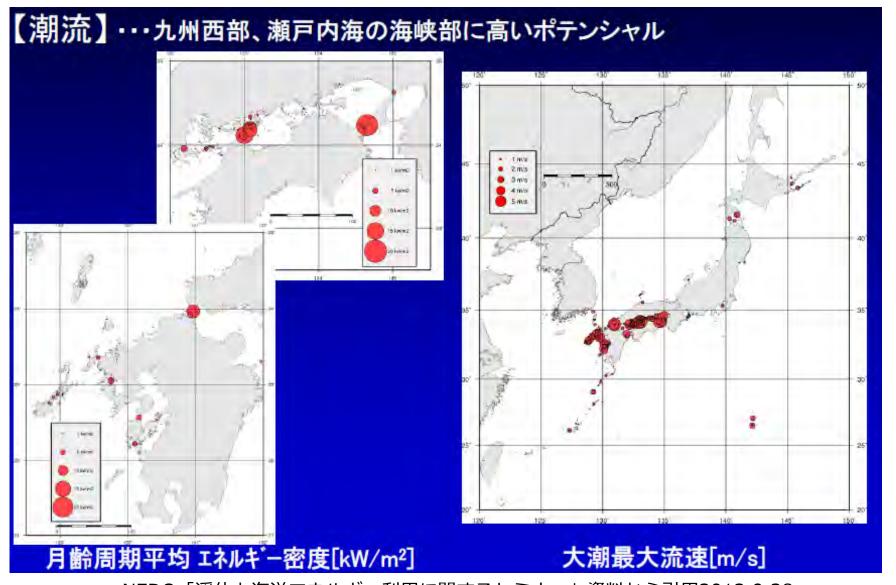

課題と解決に向けた取組み

・島嶼間の交通インフラ整備 道路橋の建設

・多数の無電化地域 卓越した潮流による発電

Tidal bridge elements including turbines and roll on/roll off elements

Approx. 460 m1


Civil bridge including road connection

Approx. 125 m1

(TIDAL BRIDGE HPより引用)

国内における潮流エネルギーの賦存量

NEDO「浮体と海洋エネルギー利用に関するセミナー」 資料から引用2012.9.28

瀬戸内海,九州北西部に大きなポテンシャル

日本における 潮流エネルギー賦存量

約22GW

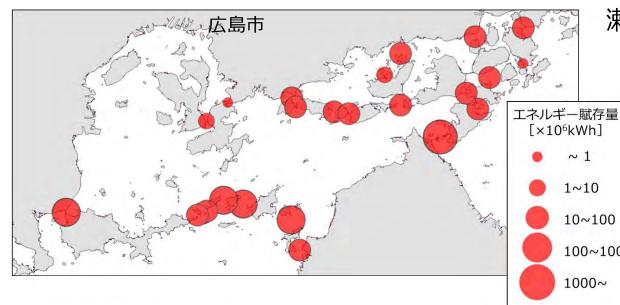
(大手電力10社 総発電容量: 207GW)

潮流発電導入量予想

約1.9GW

(2.0kt 以上の海域を対象)

潮流発電可能量予想


6.0 TWh/年

(年間需要量の約0.7%)

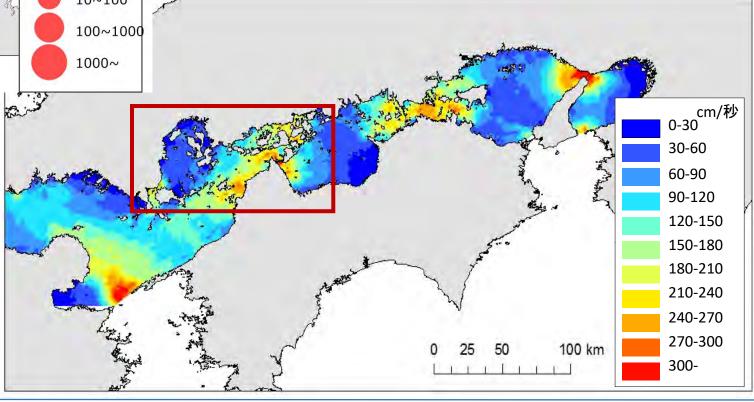
NEDO再生可能エネルギー技術白書(2013年)より

瀬戸内海における潮流エネルギーのポテンシャル

瀬戸内海西部 (芸予諸島 ~ 防予諸島を対象にして)

狭小海域(○○瀬戸, △△水道 など)の潮流ポテンシャルを 積み上げると・・・。

(流速: 最大10.0kt , 4.0kt~5.0ktの海域を対象)

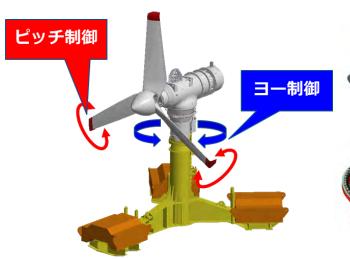

潮流エネルギー賦存量:約 2.9 GW

潮流発電可能量予想:最大で

~約640.0 GWh/年

(最大で18万世帯の電力量年間使用量を賄うことが可能)

(発電装置の立地条件により発電可能量の変動幅が大きい)


国内における潮流発電の動向 1

大型潮流発電技術 (ベースロード電源として)

2022年度の環境省「潮流発電による地域の脱炭素モデル構築事業」 公募において採択され「フェーズ2」として25年度まで事業を予定

〈事業の概要〉

- ▶ フェーズ1のタービン発電機を引上げ(2023年12月工事完了)
- > **ヨーピッチ機能付加の国内改造**を実施し、再設置して発電
- > 海洋工事は**国内の施工船を活用**して実施
- ▶ 電力系統に接続し、島内の電力として供給

可変ピッチシステム

ヨードライブシステム

潮流発電による地域の脱炭素化モデル構築事業 -取組み紹介と今後の展望-

©Kyuden Mirai Energy2021

発電機の概要

発電機出力	1,100kW	
定格流速	2.5m/s	
ロータ長	18m	
全 高 (最大高さ)	25~26m	
重量	約1,000t	
制御方法	ヨー・ピッチ 制御搭載	
耐用年数	2 5 年	

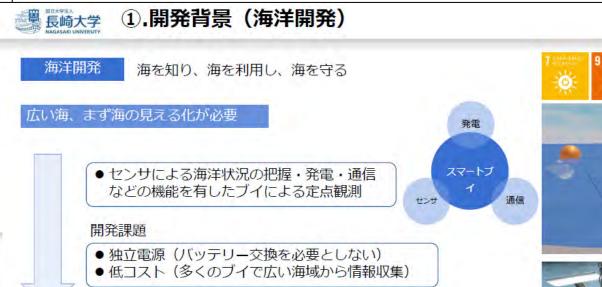
海洋エネルギー資源利用推進機構海流・潮流・潮汐分科会報告(2025年)より

国内における潮流発電の動向 2

小型潮流発電技術(多目的型分散電源として)

₡Kyocera

- ・低流速の海域でも小規模発電を可能とする
- ・海洋開発への利用 スマート漁業,養殖業へ海のデータを提供 洋上通信の電源として利用 海洋調査・観測の電源として利用


長崎大学・京セラ SMART BUOY開発に関わる共同研究

研究目的:海洋データのリアルタイム取得を実現する為に、独立 電源、及び無線機能を有した洋上ブイに関する研究を行う

共同研究開始:2020年4月~

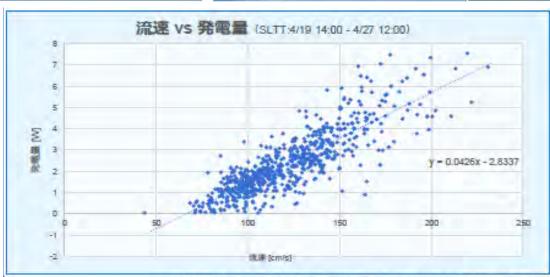
3.試作機

潮流による発電タービンを備えたスマートブイ

- 潮流は予想可能で安定的なエネルギー
- 浮沈式潮流タードンで実績あり

▼KYDCERa

海洋エネルギー資源利用推進機構海流・潮流・潮汐分科会報告(2025年)より


④.実海域試験の発電結果(実験場所・係留方法)

奈留瀬戸(五島列島)で実海域実験を実施 $R3.04.19 \sim R3.06.16$

海域流速と発電量の関係を確認

海上電源(2.0m/sで7.0~8.0W)として, 水産業や海洋調査への利用の可能性を確認

提供サービス	サービス例
海上電源	洋上設備への電力供給
洋上ネットワーク	洋上を通信エリア化
スマート漁業・養殖業	定置網漁獲高確認 リモート魚群探知機
調査・観測	プラント周辺環境監視 波浪観測 海洋ゴミ監視

海洋エネルギー資源利用推進機構海流・潮流・潮汐分科会報告(2025年)より

SETO IS POWER Co.,Ltd.

"分散"型電源の"国産"小型軽量潮流発電

- ・2024年4月に設立したStartup企業
- ・瀬戸内海の潮流をエネルギーに変えて, 地域の発展に利用する。

大畠瀬戸

最大流速 約6.0 kt~10.0kt

小型軽量潮流発電技術(地域の分散化電源として)

『小型で軽量でアフォーダブル』(ロードスターの理念)

従来の潮流発電装置は・・・

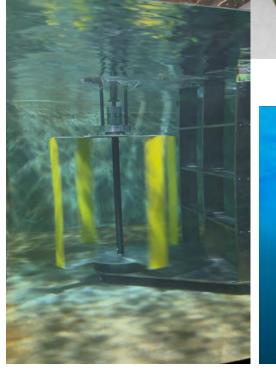
・大きくて, 重くて, 設置費用, 維持管理費用が高い

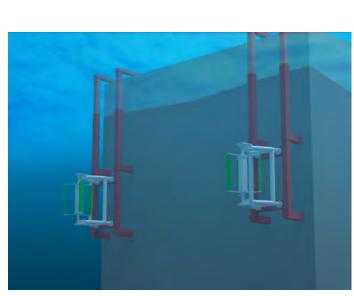
- ・小型軽量化を図ることで設置費用や維持管理費用を削減
- ・海洋構造物への敷設, 台船への艤装で省スペース化
- ・必要となる発電容量は複数基の設置で補填

小型軽量化に向けて・・・。

自動車製造技術を活用して小型軽量化を図る

- ・発泡体樹脂とC-FRPを組合せた軽量構造化
- ・特殊コーティングを施した水中軸受け
- ・低回転で発電する発電機と特殊樹脂増速機





発泡体樹脂 + CFRP軽量材

特殊樹脂増速ギア

低回転で発電する発電機

軽量構造の小型タービンと設置イメージ

瀬戸内海における3つの社会課題と潮流発電のビジネスモデル

課題1

地域資源が眠ったまま。 電力が "コスト"でしかなく、"価値"になっていない

課題2

島々にとって、将来の送電網のインフラ維持コスト 上昇による送電インフラの永続性への懸念

課題3

世界的な電力格差の存在, 高額な送電網整備が遅れ、 電力が届かない地域が今も多く存在

海洋資源を活用し、電力を『コスト』から『バリュー』へ転換

分散型潮流発電により、瀬戸内をはじめとする海洋資源豊かな地 域で電力をカーボンフリーの地産地消エネルギーへ転換。 美しい島々とともに地域ブランドを高め、電力を『コスト』から、 ブランドストーリーを持つ『地域のバリュー(価値)』へと昇華。

遠方からの送電インフラに頼らない地産地消発電

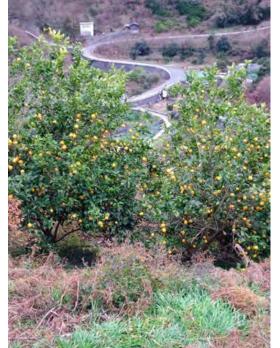
小型軽量の潮流発電は、送電インフラ依存からの脱却を可能にし、 将来の送電コスト高騰や供給不安を回避。 蓄電池との組み合わせで、地産地消型の電力循環を実現し、地域 のエネルギーレジリエンス強化にも貢献。

電力格差を是正。送電網の未整備エリアへの電力供給

インドネシアなど島々が連なる広大な地域の一部では、送電網整 備コストが高く、電力の未供給地が残っている。 無電化や自家発電の島嶼域に対しても小型・軽量の潮流発電によ り、送電網に依存しない安定供給の実現を目指す。

(SETO IS POWER株式会社 HPより引用)

地域産業における分散型電源としての利用



- ・外資系リゾートホテルを中心とした高級リゾートが多数進出 瀬戸内海観光地における分散型電源の提供
- ・島嶼部のミカン/レモン栽培&加工製品への利用 『無農薬』,『脱炭素』,『日本酒』リキュール(浄酎) 世界へ輸出可能な商品

商品・サービスのブランド力を向上させる

公募対象エリア(公園区域内) 公募対象外エリア(公園区域内) (市)コミュニティ広場の整備 ④北側広場 民有地(公園区域外) 公園区域外の市有地・県有地 (民) CCKグループ主体での整備 (市) 呉市主体での整備 ⑪みはらし荘敷地

R7.4.10 音戸の瀬戸公園 基本協定締結式

呉市『事業概要,協定概要資料(呉市説明資料) [PDFファイル/1.99MB]』 (https://www.city.kure.lg.jp/uploaded/life/161169 427252 misc.pdf) より引用

『海洋エネルギーを活用した未来社会の実現に向けて』(2023年)より引用

今後の潮流発電の課題と展望・・・。

事業化に向けた主要な技術課題

①製造/建設関連

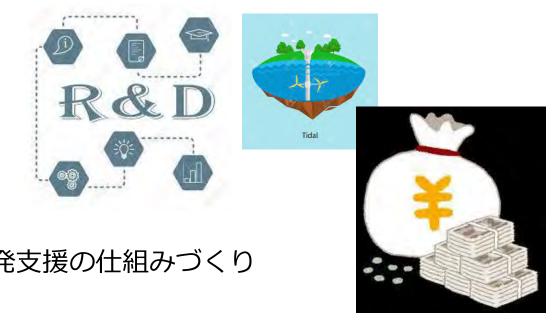
全体設計の最適化, 係留・敷設・着床工事の簡略化, 設置位置保持技術, 海底岩盤穿孔技術

②発電/設備利用関連

発電量予測,<u>蓄電技術との連携</u>,水素化利用,大型化と小型軽量化の棲み分け

③保守メンテナンス

耐久性向上、メンテナンス頻度低減、遠隔センシング・制御


4その他

- ・適用海域の特性に応じた装置仕様の決定が必要であり,技術課題は海域ごとに異なる
- ・技術の適用海域ごとに課題を抽出して,海域特性に応じて解決していくことが望ましい
- ・装置性能については,年間の発電量をトータルで試算した数字にこだわること
- ・メンテナンスコストを下げて発電コスト全体を下げる
- ・技術導入時における環境影響評価技術の構築

事業化に向けた非技術的課題

- ・技術改良のための研究開発資金不足
- ・実海域実証実験への移行に際しパートナーが不在 (不透明な市場に対する企業の研究開発投資抑制)
- ・事業化に向けて『死の谷』を乗り越えるための研究開発支援の仕組みづくり 『市場創出』と一体化した研究開発)
- ・脱炭素への移行に向けた『小型分散電源』,『エネルギーの地産地消』の周知の遅れ
- ・対象海域ごとの発電コストに対してF/Sが成立する 電力単価の明確化
- ・カーボンニュートラルに対して海洋エネルギーが 貢献できるポテンシャルと方向性の明確化
- ・『既存の海域利用者』との共生のための取り組み (協働での事業創出 など・・・。)

死の谷

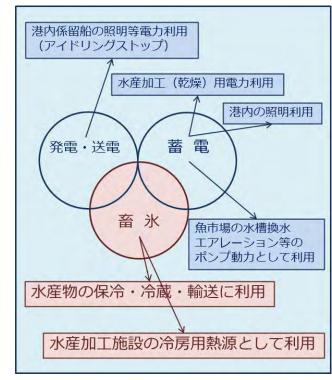
死の谷を

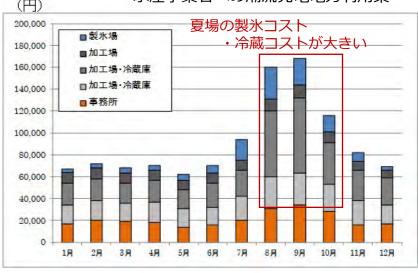
乗り越えるために!

事業化に向けた『既存の海域利用者』との共生に向けて!

『生活と産業の海』

- ・生活・産業基盤としての各種海域設定 港湾・漁港区域,漁業権,航路など・・・
- ・既存の海域利用者の日常を阻害しない
- ・潮流発電事業が海域利用者にとっても 有益となる枠組みの創出(協働事業) Win/Winの関係


例) 水産事業者に対する有用な電力利用 低コスト化を図れるのか?


港湾・漁港区域,共同漁業権,定置漁業権

(『はじめてのフェリー旅EX 瀬戸内海の多彩な航路』より引用)

水産事業者への潮流発電電力利用案

K漁協(水産加工業者)の年間電力使用内訳

ご清聴ありがとうございました。

