（7）施設の簡素化に関する検討（平成 24 年度調査）

一般的に地下鉄には，改札階（地下 1 階）とホーム階（地下 2 階）があり，少なくとも 2 層構造とな っている。一方，トラムトレインについては，車内精算が基本であることから，改札階を省略し，ホー ム階のみの 1 層構造にすることが可能である。そのため，トラムトレインについては，1層化（浅深度）等の施設の簡素化の検討を行った。

2 層以上の地下駅を 1 層化（浅深度化）等とし，施設の簡素化を行うことにより，約 9% のコスト縮減となった。
地下鉄について，平成 14 年 3 月 8 日国鉄技第 157 号『鉄道に関する技術上の基準を定める省令等の解釈基準』において，地下駅等の火災対策が定められており，防災管理室の整備や防災設備の設置等が必要とされている。地下駅の 1 層化（浅深度）によって，これらの諸設備等の設置空間を別途確保する必要があり，その分のコストが増加する可能性もあるため，一概にコスト縮減が図られるとは限らない。 また，車内精算で駅務機器等の省略は図られるものの，防災上の観点から駅の無人化までするためには更なる検討が必要である。

表 糸満市役所～名護までの概算事業費の比較［トラムトレインケース1（うるま・パイプライン）］

導入システム	概算事業費		
	施設の簡素化前 ［平成 23 年度調査］	施設の簡素化後 ［平成 24 年度調査］	$\begin{aligned} & \text { 縮減額 } \\ & \text { (縮減率) } \\ & \hline \end{aligned}$
トラムトレイン	5， 500 億円	5， 000 億円	$\underset{(\triangle 9 \%)}{\Delta 500 \text { 億円 }}$

职間部

职 部

出典：「平成 24 年度沖縄における鉄軌道をはじめとする新たな公共交通システム導入課題検討に向けた基礎調査報告書」 （内閣府政策統括官（沖縄政策担当））

3．各コスト縮減方策における事業性の検討結果

（1）平成 23 年度調査

表 事業性の検討結果（鉄道）

ケース	ルート	概算事業費	輸送人員	累積損益収支 （開業40年後）	$\begin{gathered} \mathrm{B} / \mathrm{C} \\ \text { (50 年間) } \end{gathered}$
ケース1	うるま・パイプライン	8， 500 億円	9.6 万人／日	（6， 500 億円	0.39
ケース 2	らるま・国道330号	8，700 億円	9．3 万人／日	－6， 700 億円	0． 37
ケース 3	読谷・パイプライン	7， 300 億円	8．3 万人／日	－6， 000 億円	0． 40
ケース 4	うるま・パイプライン＋支線（1）（2）③	10， 600 億円	12.6 万人／日	－7， 200 億円	0． 40
ケース 5	うるま・パイプライン＋空港接続線	9， 100 億円	9.8 万人／日	－7， 100 億円	0.38

注）概算事業費：消費税及び建設利息は含まない。端数処理の関係で負担額の合計が合わない場合がある。

表 事業性の検討結果（トラムトレイン）

ケース	ルート	概算事業費	輸送人員	累積損益収支 （開業40年後）	$\begin{gathered} \mathrm{B} / \mathrm{C} \\ (50 \text { 年間) } \end{gathered}$
ケース1	らるま・パイプライン	5， 500 億円	8.8 万人／日	－2， 900 億円	0.53
ケース 2	うるま・国道 330 号	5，500 億円	8.7 万人／日	－2， 900 億円	0． 52
ケース 3	読谷・パイプライン	4， 900 億円	7.6 万人／日	A3， 000 億円	0． 55
ケース 4	うるま・パイプライン＋支線（1）（2）（3）	7， 200 億円	11．4万人／日	－4， 000 億円	0． 46
ケース 5	らるま・パイプライン＋空港接続線	5，900 億円	9.1 万人／日	A3， 300 億円	0． 53

注）概算事業費：消費税及び建設利息は含まない。端数処理の関係で負担額の合計が合わない場合がある。
（2）平成 24 年度調査

表 事業性の検討結果（鉄道）

ケース	ルート	コスト縮減方策	概算事業費	需要予測値 （平成 42 年度）	累積損益収支 （開業 40 年後）	B／C （50年間）
ケース 1－1	うるま・パイプライン	部分単線化	7， 500 億円	8.8 万人／日	－5， 100 億円	0.44
（ヶース 1）		（全線複線）	（ 8，500 億円）	（ 9.6 万人／日）	（ $\mathbf{4} 6,500$ 億円）	（0．39）
ケース 1－2	うるま・パイプライン	$\begin{aligned} & \text { 小型システム } \\ & \text { 【鉄輪リニア】 } \end{aligned}$	7， 300 億円	9.4 万人／日	（5， 700 億円	0． 43
（ケース 1）		（普通鉄道）	（ 8， 500 億円）	（ 9．6万人／日）	（ $\mathbf{4} 6,500$ 億円）	（0．39）
ケース 2－1	うるま・国道 330 号	部分単線化	7， 700 億円	8.5 万人／日	（5， 300 億円	0.42
（ケース 2）		（全線複線）	（ 8， 700 億円）	（ 9．3 万人／日）	（ $\mathbf{4} 6,700$ 億円）	（0．37）
ケース 3－1	読谷・パイプライン	部分単線化	6， 200 億円	7.3 万人／日	（4， 600 億円	0.45
（ヶース 3）		（全線複線）	（ 7， 300 億円）	（ 8.3 万人／日）	（ $\mathbf{6} 6,000$ 億円）	（0．40）
ケース 4－1	$\begin{gathered} う る ま \cdot ハ ゚ イ フ ゚ ラ イ ン ~ \\ + \text { 支線(1)(2)(3) } \end{gathered}$	部分単線化	9，200 億円	11.5 万人／日	（ 5 ， 100 億円	0.44
（ケース4）		（全線複線）	（ 10,600 億円）	（12．6 万人／日）	（ $\mathbf{A} 7,200$ 億円）	（0．40）
ケース 5－1	$\begin{gathered} \text { うるま・パイプライン } \\ \text { +空港接続線 } \\ \hline \end{gathered}$	部分単線化	8， 000 億円	9.0 万人／日	（ 5 ， 500 億円	0． 43
（ケース 5）		（全線複線）	（ 9， 100 億円）	（ 9.8 万人／日）	（ $\mathbf{A} 7,100$ 億円）	（0．38）
ケース 6	沖䋥自動車道(らるま・パイプライン)	沖縄自動車道活用	6， 100 億円	5.4 万人／日	（66， 800 億円	0.25
（ケース 1）		（基本ケース）	（ 8，500 億円）	（ 9．6万人／日）	（ $\mathbf{4} 6,500$ 億円）	（0．39）
ケース 7	$\begin{aligned} & \text { うるま・国道 } 58 \text { 号 } \\ & \text { (らるま・パイプライン) } \end{aligned}$	構造変更	7，700 億円	8.6 万人／日	－6， 400 億円	0.38
（ケース 1）		（基本ケース）	（ 8， 500 億円）	（ 9.6 万人／日）	（ $\mathbf{4} 6,500$ 億円）	（0．39）

注）（ ）内は比較対象ケース（平成 23年度調査検討ケース）を示す。
表 事業性の検討結果（トラムトレイン）

ケース	ルート	コスト縮減方策	概算事業費	需要予測値 （平成 42 年度）	累積損益収支 （開業 40 年後）	B／C （50 年 間）
ケース 1－1	うるま・パイプライン	部分単線化	4， 600 億円	8.0 万人／日	－2， 200 億円	0.59
（ケ－ス，1）		（全線複線）	（ 5，500 億円）	（ 8.8 万人／日）	（ $\mathbf{(2 , 9 0 0 ~}$ 億円）	（0．53）
ケース 1－2	うるま・パイプライン	施設簡素化	5， 000 億円	8.8 万人／日	（2， 600 億円	0.57
（ヶ－ス 1）		（基本ケース）	（ 5，500 億円）	（ 8.8 万人／日）	（ $\mathbf{A} 2,900$ 億円）	（0．53）
ケース2－1	うるま・国道330号	部分単線化	4， 700 億円	7.8 万人／日	（2， 100 億円	0.58
（ケ－ス2）		（全線複線）	（ 5，500 億円）	（ 8.7 万人／日）	（ $\mathbf{(2 , 9 0 0}$ 億円）	（0．52）
ケース 3－1	読谷・パイプライン	部分単線化	4， 100 億円	6.5 万人／日	－2，300 億円	0.60
（ケース 3）		（全線複線）	（ 4，900 億円）	（ 7.6 万人／日）	（ $\mathbf{A} 3,000$ 億円）	（0．55）
ケース 4－1	$\begin{gathered} \text { うるま・パイプライン } \\ \text { +支線(1)(2)(3) } \\ \hline \end{gathered}$	部分単線化	6，100 億円	10.2 万人／日	－3， 000 億円	0.48
（ケース 4）		（全線複線）	（ 7， 200 億円）	（11．4 万人／日）	（ 4 4， 000 億円）	（0．46）
ケース 5－1	$\begin{gathered} \text { らるま・パイプライン } \\ \text { +空港接続線 } \end{gathered}$	部分単線化	4， 900 億円	8.1 万人／日	（2， 400 億円	0.56
（ケース 5）		（全線複線）	（ 5，900 億円）	（ 9．1 万人／日）	（ $\mathbf{4} 3,300$ 億円）	（0．53）
ケース 6	沖縄自動車道 （らるま・パイプライン）	沖縄自動車道活用	4， 100 億円	5.1 万人／日	③， 800 億円	0.46
（ケース 1）		（基本ケース）	（ 5，500 億円）	（ 8.8 万人／日）	（ $\mathbf{4} 2,900$ 億円）	（0．53）

注）（ ）内は比較対象ケース（平成 23 年度調査検討ケース）を示す。
（2）平成 25 年度調査

表 事業性の検討結果（鉄道）

ケース	ルート	コスト縮減方策	概算事業費	需要予測値 （平成 42 年度）	累積損益収支 （開業40年後）	B／C （50 年間）
ケース1	らるま・パイプライン	最新技術の採用【 S E N S 工法】	7， 700 億円＊	9.6 万人／日	－6， 000 億円	0． 43
（ケース1）		（全線複線）	（ 8，500 億円）	（ 9．6万人／日）	（ $\mathbf{\Delta} 6,500$ 億円）	（0．39）
ケース1	うるま・パイプライン	単線区間の拡大	6， 000 億円＊	8.1 万人／日	－4， 500 億円	0． 44
（ケース1）		（全線複線）	（ 7， 700 億円＊）	（ 9．6 万人／日）	（ $\mathbf{6}$ ， 000 億円）	（0．43）
ケース1	うるま・パイプライン	全線単線化	5，500 億円＊	8.1 万人／日	（4， 100 億円	0.48
（ケース1）		（全線複線）	（ 7， 700 億円＊）	（ 9．6 万人／日）	（ $\mathbf{4} 6,000$ 億円）	（0．43）
ケース1	らるま・パイプライン	$\begin{gathered} \text { 小型システム } \\ \text { 【スマート・リニアメト】】 } \end{gathered}$	6， 800 億円＊	10.6 万人／日	－5， 300 億円	0． 47
（ケース1）		（普通鉄道）	（ 8，500 億円）	（ 9．6万人／日）	（ $\mathbf{\Delta} 6,500$ 億円）	（0．39）
ケース1	うるま・パイプライン	地下区間から地上区間への構造変更 【名護付近の構造変更】	7， 500 億円＊	9.6 万人／日	A5， 800 億円	0． 44
（ケース1）		（全線複線）	（ 7，700 億円＊）	（ 9.6 万人／日）	（ $\mathbf{6} 6,000$ 億円）	（0．43）
ケース 5	$\begin{gathered} \text { らるま・パイプライン } \\ \text { +空港接続線 } \end{gathered}$	地下区間から地上区間への構造変更 【空港接続線の構造変更】	8,100 億円＊ ［400 億円＊${ }^{\text { }}$ ］	8.3 万人／日	（6， 600 億円	0． 43
（ケース5）		（全線複線）	$\begin{gathered} (8,300 \text { 億円*) } \\ ([600 \text { 億円*]) } \end{gathered}$	（ 9.8 万人／日）	（ $\mathbf{\triangle} 6,600$ 億円）	（0．42）
ケース1	うるま・パイプライン	コスト縮減方策の組合せ －最新技術の採用 【S E N S 工法】 - 部分単線化 - 小型システム 【スマート・リニアメト】】 －地下区間から地上区間 への構造変更 【名護付近の構造変更】	6， 000 億円＊，＊2	10．2 万人／日	A3， 900 億円	0.58
（ヶース1）		（全線複線）	（ 8，500 億円）	（ 9．6万人／日）	（ $\mathbf{\triangle} 6,500$ 億円）	（0．39）

＊：最新技術の採用によるコスト縮減を考慮した金額である。
＊2：平成 25 年度調査の地下区間から地上区間への構造変更のらち，「名護付近の構造変更」を適用している。
注1）（ ）内は比較対象ケース（平成 23 年度，平成 24 年度，平成 25 年度調査検討ケース）を示す。
注2）［ ］内は空港接続線の金額を示す。

表 事業性の検討結果（トラムトレイン）

ケース	ルート	コスト縮減方策	概算事業費	需要予測値 （平成 42 年度）	累積損益収支 （開業 40 年後）	B／C （50年間）
ケース1	うるま・パイプライン	最新技術の採用【S ENS工法】	4， 800 億円＊	8.8 万人／日	－2， 300 億円	0.59
（欣ス1）		（全線複線）	（ 5，500 億円）	（ 8.8 万人／日）	（ $\mathbf{A} 2,900$ 億円）	（0．53）
ケース1	うるま・パイプライン	単線区間の拡大	3，700 億円＊	8.1 万人／日	－1， 400 億円	0.76
（ケース1）		（全線複線）	（ 4， 800 億円＊）	（ 8.8 万人／日）	（ $\mathbf{A} 2,300$ 億円）	（0．59）
ケース1	うるま・パイプライン	全線単線化	3，500 億円＊	7.9 万人／日	－1， 200 億円	0.77
（ケース1）		（全線複線）	（ 4， 800 億円＊）	（ 8.8 万人／日）	（ $\mathbf{(2 , 3 0 0 ~}$ 億円）	（0．59）
ケース 4	$\begin{gathered} \text { うるま・パイプライン } \\ \text { +支線(1) } \end{gathered}$	地下区間から地上区間への構造変更 【支線（1）（名護～沖縄美ら海水族館の構造変更】	6， 000 億円＊ ［200 億円＊］	11．3 万人／日	A 3， 000 億円	0． 49
（ヶース4）		（全線複線）	（ 6， 500 億円＊） （［700 億円＊］）	（11．4万人／日）	（ $\mathbf{\triangle} 3,300$ 億円）	（0．50）
ケース 7	うるま・国道58号	地下区間から地上区間への構造変更 【国道58号への地平構造 による導入】	4，200 億円＊	8.9 万人／日	－1， 900 億円	0． 59
ケース 7	らるま・国道58号 + 空港接続線	地下区間から地上区間への構造変更 【空港接続線の構造変更】	4， 300 億円＊ ［100 億円＊］	8.1 万人／日	－2， 100 億円	0． 62
ケース 7	うるま・国道58号	コスト縮減方策の組合せ －最新技術の採用 【 S E N S 工法】 - 単線区間の拡大 - 地下区間から地上区間への構造変更 【国道58号への地平構造に よる導入】	2，900 億円＊	7.9 万人／日	⑨00 億円	0． 83

＊：最新技術の採用によるコスト縮減を考慮した金額である。
注1）（ ）内は比較対象ケース（平成 23 年度，平成 24 年度，平成 25 年度調査検討ケース）を示す。
注2）［ ］内は空港接続線の金額を示す。
（3）平成 26 年度調査

表 事業性の検討結果（鉄道）

ケース	ルート	コスト縮減方策	概算事業費	総概算事業費 （最新デ フレーター3\％，消費税 8\％を含む）	需要予測値 （平成 42 年度）	累積損益収支 （開業 40 年後）	$\begin{gathered} \text { B/C } \\ (50 \text { 年間) } \end{gathered}$
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	ルート等の見直し	8， 100 億円 ［400 億円］	8， 900 億円	8.6 万人／日	（6， 300 億円	0． 49
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & \text { +支線(1) } \end{aligned}$	ルート等の見直し	$\begin{gathered} 9,000 \text { 億円 } \\ {[1,400 \text { 億円] }} \end{gathered}$	10， 000 億円	10．4万人／日	（6，600 億円	0． 59
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & \text { +支線(2)(3) } \end{aligned}$	ルート等の見直し	$\begin{gathered} 9,000 \text { 億円 } \\ {[1,300 \text { 億円 }]} \end{gathered}$	9， 900 億円	12.5 万人／日	A6， 300 億円	0． 49
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & \text { +支線(1)(2)(3) } \end{aligned}$	ルート等の見直し	$\begin{gathered} 9,900 \text { 億円 } \\ {[2,300 \text { 億円 }]} \end{gathered}$	10， 900 億円	13．0 万人／日	－7， 000 億円	0． 56
ケース 7	$\begin{aligned} & \text { うるま・国道 } 58 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	ルート等の見直し	6， 800 億円 ［200 億円］	7， 500 億円	8．8 万人／日	－5， 000 億円	0.59
（ケース 7）	らるま・国道58号 ＋空港接続線	（全線複線）	（ 7，300 億円） （［300 億円］）	－	（8．2 万人／日）	（ $\mathbf{4} 6,400$ 億円）	（0．39）
ケース 8	読谷•国道58号	新規ルート	5， 900 億円	6，500 億円	9.7 万人／日	－4， 300 億円	0． 56
ケース 8	読谷•国道58号 ＋空港接続線	新規ルート	6， 200 億円 ［200 億円］	6， 800 億円	8.2 万人／日	④， 900 億円	0． 56
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	コスト縮減方策の組合せ －最新技術の採用【 S E N S 工法】 - 部分単線化 - 小型システム【スマート・リニアメトロ】 －地下区間から地上区間への構造変更 【名護付近の構造変更，空港接続線 の構造変更】 －ルート等の見直し	6， 400 億円 ［400 億円］	7， 100 億円	9.8 万人／日	（4， 300 億円	0． 60

注1）概算事業費は，最新技術の採用によるコスト縮減を考慮した金額であり，平成 25 年度調査の地下区間から地上区間への構造変更のらち，「名護付近の構造変更」を適用している。
注2）平成 26 年度調査は再構築した需要予測モデル等を用いて検討している。
注3）（ ）内は比較対象ケース（平成 2 5 年度調査検討ケース）を示す。
注4）［ ］内は支線または空港接続線の金額を示す。
注5）デフレーターは，物価変動及び労務単価の変化割合を示す。
注6）平成 26 年 10 月時点と平成 23 年度の建設工事費デフレーターの数値を比べると，労務単価等の上昇に伴い 3% 上昇しているため，総概算事業費算出にあたつて考慮することとした。
注7）消費税（ 8% ）は，用地費を除く部分に適用した。
注 8 ）需要予測値，累積損益収支，B／Cは，平成 26 年度調査で構築した県外来訪者モデルの交通手段選択モデルに更なる改善の余地 が残されたことから，平成 27 年度調査において精査を行い，再計算する予定である。

表 事業性の検討結果（トラムトレイン）

ケース	ルート	コスト縮減方策	概算事業費	総概算事業費 （最新デ フレーター 3\％，消費税 8\％を含む）	需要予測値 （平成 42 年度）	累積損益収支 （開業40年後）	$\begin{gathered} \text { B/C } \\ \text { (50 年間) } \end{gathered}$
ケース 2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	ルート等の見直し	5， 000 億円 ［100 億円］	5，500 億円	9.2 万人／日	－1，900 億円	0． 61
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & \text { +支線(1) } \end{aligned}$	ルート等の見直し	5， 200 億円 ［300 億円］	5，700 億円	11.7 万人／日	（1， 500 億円	0． 77
ケース2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & + \text { 支線(2)(3) } \end{aligned}$	ルート等の見直し	5， 900 億円 ［900 億円］	6， 500 億円	12．8万人／日	①， 900 億円	0． 55
ケース 2	$\begin{aligned} & \text { うるま・国道 } 330 \text { 号 } \\ & \text { +空港接続線 } \\ & \text { +支線(1)(2)(3) } \end{aligned}$	ルート等の見直し	$\begin{gathered} 6,100 \text { 億円 } \\ {[1,100 \text { 億円 }]} \end{gathered}$	6， 700 億円	14．1 万人／日	－1，900 億円	0.64
ケース 7	$\begin{aligned} & \text { うるま・国道 } 58 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	ルート等の見直し	4， 200 億円 ［100 億円］	4， 700 億円	8.0 万人／日	－2， 000 億円	0.64
（ヶース 7）	$\begin{aligned} & \text { うるま・国道 } 58 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	（全線複線）	（ 4， 300 億円） （［100 億円］）	－	（8．1 万人／日）	（ $\mathbf{\triangle} 2,100$ 億円）	（0．62）
ケース 8	読谷•国道58号	新規ルート	3， 600 億円	4， 000 億円	6． 6 万人／日	－2， 000 億円	0． 52
ケース 8	読谷•国道58号 + 空港接続線	新規ルート	3， 700 億円 ［100 億円］	4， 000 億円	6．0 万人／日	－2， 100 億円	0． 58
ケース 7	$\begin{aligned} & \text { うるま・国道 } 58 \text { 号 } \\ & \text { +空港接続線 } \end{aligned}$	コスト縮減方策の組合せ －最新技術の採用【 S E N S 工法】 - 単線区間の拡大 - 地下区間から地上区間への構造変更【国道58号への地平構造による導入，空港接続線の構造変更】 －ルート等の見直し	2， 900 億円 ［100億円］	3， 200 億円	7．3 万人／日	－ 900 億円	0． 84

注1）概算事業費は，最新技術の採用によるコスト縮減を考慮した金額である。
注2）平成26年度調査は再構築した需要予測モデル等を用いて検討している。
注3）（ ）内は比較対象ケース（平成 25 年度調査検討ケース）を示す。
注4）［ ］内は支線または空港接続線の金額を示す。
注5）デフレーターは，物価変動及び労務単価の変化割合を示す。
注 6 ）平成 26 年 10 月時点と平成 23 年度の建設工事費デフレーターの数値を比べると，労務単価等の上昇に伴い 3% 上昇しているため，総概算事業費算出にあたって考慮することとした。
注7）消費税（ 8% ）は，用地費を除く部分に適用した。
注 8 ）需要予測値，累積損益収支，B／C は，平成 26 年度調査で構築した県外来訪者モデルの交通手段選択モデルに更なる改善の余地 が残されたことから，平成 27 年度調査において精査を行い，再計算する予定である。

